


Python for Software Design 

Python for Software Design is a concise introduction to software design 
using the Python programming language. Intended for people with no 
programming experience, this book starts with the most basic concepts 
and gradually adds new material. Some of the ideas students find most 
challenging, like recursion and object-oriented programming, are divided 
into a sequence of smaller steps and introduced over the course of several 
chapters. The focus is on the programming process, with special emphasis 
on debugging. The book includes a wide range of exercises, from short 
examples to substantial projects, so that students have ample opportunity 
to practice each new concept. 

Exercise solutions and code examples along with Swampy, a suite of 
Python programs that is used in some of the exercises, are available from 
thinkpython.com. 

Allen B. Downey, Ph.D., is an Associate Professor of Computer Sci­
ence at the Olin College of Engineering in Needham, Massachusetts. He 
has taught at Wellesley College, Colby College, and UC Berkeley. He 
has a doctorate in computer science from UC Berkeley and a master's 
degree from MIT. Professor Downey is the author of a previous version 
of this book, titled How to Think Like a Computer Scientist: Learning with 
Python, which he self-published in 2001. 



PYTHON FOR 

SOFTWARE 

DESIGN 

How to Think Like a 

Computer Scientist 

Allen B. Downey 
Olin College of Engineering 

"CAMBRIDGE 
:. UNIVERSITY PRESS 



CAMBRIDGE UNIVERSITY PRESS 

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, 
Sao Paulo, Delhi 

Cambridge University Press 
32 Avenue of the Americas, New York, NY 10013-2473, USA 

www.carnbridge.org 
Information on this title: www.carnbridge.org/978052172S965 

© Allen B. Downey 2009 

This publication is in copyright. Subject to statutory exception 
and to the provisions of relevant collective licenSing agreements, 
no reproduction of any part may take place without the written 
permission of Cambridge University Press. 

First published 2009 

Printed in the United States of America 

A catalog record for this publication is available from the British Library. 

Library of Congress Cataloging in Publication data 
Downey, Allen. 

Python for software design: how to think like a computer scientist I Allen B. Downey. 
p. em. 

Includes index. 
ISBN 978-0-521-89811-9 (hardback) -ISBN 978-0-521-72596-5 (pbk.) 
1. Python (Computer program language) I. Title. 
QA76.73.P98D6932009 
005.13'3-dc22 2008054459 

ISBN 978-0-521-89811-9 hardback 
ISBN 978-0-521-72596-5 paperback 

Cambridge University Press has no responsibility for the persistence or 
accuracy of URLs for external or third-party Internet Web sites referred to in 
this publication and does not guarantee that any content on such Web sites is, 
or will remain, accurate or appropriate. Information regarding prices, travel 
timetables. and other factual information given in this work are correct at 
the time of first printing. but Cambridge University Press does not guarantee 
the accuracy of such information thereafter. 



Contents 

Preface page xi 

1 The Way of the Program 1 

1.1 The Python Programming Language 1 
1.2 What Is a Program? 3 
1.3 What Is Debugging? 3 

1.3.1 Syntax Errors 3 
1.3.2 Runtime Errors 4 
1.3.3 Semantic Errors 4 
1.3.4 Experimental Debugging 4 

1.4 Formal and Natural Languages 5 
1.5 The First Program 6 
1.6 Debugging 7 
1.7 Glossary 8 
1.8 Exercises 9 

2 Variables, Expressions, and Statements 10 
2.1 Values and Types 10 
2.2 Variables 11 
2.3 Variable Names and Keywords 13 
2.4 Statements 13 
2.5 Operators and Operands 14 
2.6 Expressions 15 
2.7 Order of Operations 15 
2.8 String Operations 16 
2.9 Comments 17 
2.10 Debugging 17 
2.11 Glossary 18 
2.12 Exercises 19 

v 



vi Contents 

3 Functions 21 
3.1 Function Calls 21 
3.2 Type Conversion Functions 21 
3.3 Math Functions 22 
3.4 Composition 23 
3.5 Adding New Functions 24 
3.6 Definitions and Uses 26 
3.7 Flow of Execution 26 
3.8 Parameters and Arguments 27 
3.9 Variables and Parameters Are Local 28 
3.10 Stack Diagrams 29 
3.11 Fruitful Functions and Void Functions 30 
3.12 Why Functions? 31 
3.13 Debugging 31 
3.14 Glossary 32 
3.15 Exercises 33 

4 Case Study: Interface Design 35 

4.1 Turtle W odd 35 
4.2 Simple Repetition 36 
4.3 Exercises 37 
4.4 Encapsulation 38 
4.5 Generalization 39 
4.6 Interface Design 40 
4.7 Refactoring 41 
4.8 A Development Plan 42 
4.9 Docstring 43 
4.10 Debugging 43 
4.11 Glossary 44 
4.12 Exercises 44 

5 Conditionals and Recursion 46 

5.1 Modulus Operator 46 
5.2 Boolean Expressions 46 
5.3 Logical Operators 47 
5.4 Conditional Execution 48 
5.5 Alternative Execution 48 
5.6 Chained Conditionals 49 
5.7 Nested Conditionals 49 
5.8 Recursion 50 
5.9 Stack Diagrams for Recursive Functions 52 
5.10 Infinite Recursion 52 
5.11 Keyboard Input 53 
5.12 Debugging 54 
5.13 Glossary 55 
5.14 Exercises 56 



Contents vii 

6 Fruitful Functions 59 
6.1 Return Values 59 
6.2 Incremental Development 60 
6.3 Composition 63 
6.4 Boolean Functions 64 
6.5 More Recursion 65 
6.6 Leap of Faith 67 
6.7 One More Example 67 
6.8 Checking Types 68 
6.9 Debugging 69 
6.10 Glossary 70 
6.11 Exercises 71 

7 Iteration 73 

7.1 Multiple Assignment 73 
7.2 Updating Variables 74 
7.3 The while Statement 75 
7.4 break 76 
7.5 Square Roots 77 
7.6 Algorithms 79 
7.7 Debugging 79 
7.8 Glossary 80 
7.9 Exercises 80 

8 Strings 82 

8.1 A String Is a Sequence 82 
8.2 len 83 
8.3 Traversal with a for Loop 83 
8.4 String Slices 85 
8.5 Strings Are Immutable 86 
8.6 Searching 86 
8.7 Looping and Counting 87 
8.8 string Methods 87 
8.9 The in Operator 89 
8.10 String Comparison 89 
8.11 Debugging 90 
8.12 Glossary 92 
8.13 Exercises 92 

9 Case Study: Word Play 95 

9.1 Reading Word Lists 95 
9.2 Exercises 96 
9.3 Search 97 
9.4 Looping with Indices 99 
9.5 Debugging 100 
9.6 Glossary 101 
9.7 Exercises 101 



viii Contents 

10 Usts 103 
10.1 A List Is a Sequence 103 
10.2 Lists Are Mutable 104 
10.3 Traversing a List 105 
10.4 List Operations 106 
10.5 List Slices 106 
10.6 List Methods 107 
10.7 Map, Filter, and Reduce 108 
10.8 Deleting Elements 109 
10.9 Lists and Strings 110 
10.10 Objects and Values 111 
10.11 Aliasing 113 
10.12 List Arguments 113 
10.13 Debugging 115 
10.14 Glossary 116 
10.15 Exercises 117 

11 Dictionaries 119 
11.1 Dictionary as a Set of Counters 121 
11.2 Looping and Dictionaries 123 
11.3 Reverse Lookup 123 
11.4 Dictionaries and Lists 124 
11.5 Memos 126 
11.6 Global Variables 128 
11.7 Long Integers 129 
11.8 Debugging 130 
11.9 Glossary 131 
11.10 Exercises 131 

12 Tuples 133 

12.1 Tuples Are Immutable 133 
12.2 Tuple Assignment 135 
12.3 Tuples as Return Values 136 
12.4 Variable-Length Argument Tuples 136 
12.5 Lists and Tuples 138 
12.6 Dictionaries and Tuples 139 
12.7 Comparing Tuples 141 
12.8 Sequences of Sequences 142 
12.9 Debugging 143 
12.10 Glossary 144 
12.11 Exercises 145 

13 Case Study: Data Structure Selection 147 

13.1 Word Frequency Analysis 147 
13.2 Random Numbers 148 
13.3 Word Histogram 149 
13.4 Most Common Words 151 



Contents ix 

13.5 Optional Parameters 152 
13.6 Dictionary Subtraction 152 
13.7 Random Words 153 
13.8 Markov Analysis 154 
13.9 Data Structures 155 
13.10 Debugging 157 
13.11 Glossary 158 
13.12 Exercises 158 

1.4 Rles 1.59 
14.1 Persistence 159 
14.2 Reading and Writing 159 
14.3 Format Operator 160 
14.4 Filenames and Paths 161 
14.5 Catching Exceptions 163 
14.6 Databases 164 
14.7 Pickling 165 
14.8 Pipes 166 
14.9 Writing Modules 167 
14.10 Debugging 168 
14.11 Glossary 169 
14.12 Exercises 169 

1.5 Classes and Objects 1.72 
15.1 User-Defined Types 172 
15.2 Attributes 173 
15.3 Rectangles 174 
15.4 Instances as Return Values 176 
15.5 Objects Are Mutable 176 
15.6 Copying 177 
15.7 Debugging 179 
15.8 Glossary 179 
15.9 Exercises 180 

1.6 Classes and Functions 1.82 
16.1 Time 182 
16.2 Pure Functions 183 
16.3 Modifiers 184 
16.4 Prototyping versus Planning 185 
16.5 Debugging 187 
16.6 Glossary 188 
16.7 Exercises 188 

1.7 Classes and Methods 1.89 
17.1 Object-Oriented Features 189 
17.2 Printing Objects 190 
17.3 Another Example 192 
17.4 A More Complicated Example 192 



x Contents 

17.5 The lnit Method 193 
17.6 The __ str __ method 194 
17.7 Operator Overloading 195 
17.8 Type-Based Dispatch 195 
17.9 Polymorphism 197 
17.10 Debugging 198 
17.11 Glossary 199 
17.12 Exercises 199 

18 Inheritance 201 
18.1 Card Objects 201 
18.2 Class Attributes 202 
18.3 Comparing Cards 204 
18.4 Decks 205 
18.5 Printing the Deck 205 
18.6 Add, Remove, Shuffle, and Sort 206 
18.7 Inheritance 207 
18.8 Class Diagrams 209 
18.9 Debugging 210 
18.10 Glossary 211 
18.11 Exercises 212 

19 Case Study: Tkinter 214 
19.1 GU! 214 
19.2 Buttons and Callbacks 215 
19.3 Canvas Widgets 216 
19.4 Coordinate Sequences 217 
19.5 More Widgets 218 
19.6 Packing Widgets 220 
19.7 Menus and Callables 223 
19.8 Binding 223 
19.9 Debugging 226 
19.10 Glossary 227 
19.11 Exercises 228 

Appendix 231 

Index 241 



Preface 

THE STRANGE HISTORY OF THIS BOOK 

In January 1999, I was preparing to teach an introductory programming class in Java. 
I had taught it three times and I was getting frustrated. The failure rate in the class 
was too high, and, even for students who succeeded, the overall level of achievement 
was too low. 

One of the problems I saw was the books. I had tried three different books (and had 
read a dozen more), and they all had the same problems. They were too big, with 
too much unnecessary detail about Java and not enough high-level guidance about 
how to program. And they all suffered from the trap door effect: they would start out 
easy, proceed gradually, and then somewhere around Chapter 4 the bottom would 
fall out. The students would get too much new material, too fast, and I would spend 
the rest of the semester picking up the pieces. 

Two weeks before the first day of classes, I decided to write my own book. I wrote 
one 10-page chapter a day for 13 days. I made some revisions on Day 14 and then 
sent it out to be photocopied. 

My goals were: 

• Keep it short. It is better for students to read 10 pages than not read 50 pages. 
• Be careful with vocabulary. I tried to minimize the jargon and define each term 

at first use. 
• Build gradually. To avoid trap doors, I took the most difficult topics and split 

them into a series of small steps. 
• Focus on programming, not the programming language. I included the minimum 

useful subset of Java and left out the rest. 

I needed a title, so on a whim I chose How to Think Like a Computer Scientist. 

xi 



xii Preface 

My first version was rough, but it worked. Students did the reading, and they under­
stood enough that I could spend class time on the hard topics, the interesting topics, 
and (most important) letting the students practice. 

I released the book under the GNU Free Documentation License, which allows users 
to copy, modify, and distribute the book. 

What happened next is the cool part. Jeff Elkner, a high school teacher in Vir­
ginia, adopted my book and translated it into Python. He sent me a copy of his 
translation, and I had the unusual experience of learning Python by reading my 
own book. 

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 
we released How to Think Like a Computer Scientist: Learning with Python, also 
under the GNU Free Documentation License. As Green Tea Press, I published the 
book and started selling hard copies through Amazon.com and college book stores. 
Other books from Green Tea Press are available at greenteapress. com. 

In 2003, I started teaching at Olin College, and I got to teach Python for the first time. 
The contrast with Java was striking. Students struggled less, learned more, worked 
on more interesting projects, and generally had a lot more fun. 

Over the last five years I have continued to develop the book, correcting errors, 
improving some of the examples, and adding material, especially exercises. In 2008, 
I started work on a major revision of the book - at the same time, I was contacted by 
an editor at Cambridge University Press who was interested in publishing the next 
edition. Good timing! 

The result is this book, now with the less grandiose title Python for Software Design. 
Some of the changes are: 

• I added a section about debugging at the end of each chapter. These sections 
present general techniques for finding and avoiding bugs, and warnings about 
Python pitfalls. 

• I removed the material in the last few chapters about the implementation of lists 
and trees. I still love those topics, but I thought they were incongruent with the 
rest of the book. 

• I added more exercises, ranging from short tests of understanding to a few 
substantial projects. 

• I added a series of case studies - longer examples with exercises, solutions, and 
discussion. Some of them are based on Swampy, a suite of Python programs I 
wrote for use in my classes. Swampy, code examples, and some solutions are 
available from thinkpython. com. 

• I expanded the discussion of program development plans and basic design 
patterns. 

• The use of Python is more idiomatic. The book is still about programming, not 
Python, but now I think the book gets more leverage from the language. 

I hope you enjoy working with this book, and that it helps you learn to program and 
think, at least a little bit, like a computer scientist. 



Preface xiii 

ACKNOWLEDGMENTS 

First and most importantly, I thank Jeff Elkner, who translated my Java book into 
Python, which got this project started and introduced me to what has turned out to 
be my favorite language. 

I also thank Chris Meyers, who contributed several sections to How to Think Like a 
Computer Scientist. 

And I thank the Free Software Foundation for developing the GNU Free Doc­
umentation License, which helped make my collaboration with Jeff and Chris 
possible. 

I also thank the editors at Lulu who worked on How to Think Like a Com­
puter Scientist and the editors at Cambridge University Press who worked on this 
edition. 

I thank all the students who worked with earlier versions of this book and all the 
contributors (listed below) who sent in corrections and suggestions. 

And I thank my wife, Lisa, for her work on this book, and Green Tea Press, and 
everything else, too. 

CONTRIBUTOR LIST 

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and cor­
rections over the past few years. Their contributions, and enthusiasm for this project, 
have been a huge help. 

If you have a suggestion or correction, please send email to feedback@ 
thinkpython. com. If I make a change based on your feedback, I will add you to 
the contributor list (unless you ask to be omitted). 

If you include at least part of the sentence the error appears in, it will be easier for 
me to search for it. Page and section numbers are fine, too, but not quite as easy to 
work with. Thanks! 

• Lloyd Hugh Allen sent in a correction to Section 8.4. 
• Yvon Boulianne sent in a correction of a semantic error in Chapter 5. 
• Fred Bremmer submitted a correction in Section 2.1. 
• Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book 

into beautiful HTML. 
• Michael Conlon sent in a grammar correction in Chapter 2 and an improve­

ment in style in Chapter 1, and he initiated discussion on the technical aspects of 
interpreters. 

• Benoit Girard sent in a correction to a humorous mistake in Section 5.6. 
• Courtney Gleason and Katherine Smith wrote horsebet. py, which was used as 

a case study in an earlier version of the book. Their program can now be found 
on the website. 



xiv Preface 

• Lee Harr submitted more corrections than we have room to list here, and indeed 
he should be listed as one of the principal editors of the text. 

• James Kaylin is a student using the text. He has submitted numerous corrections. 
• David Kershaw fixed the broken catTwice function in Section 3.10. 
• Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also 

fixed the Makefile so that it creates an index the first time it is run and helped us 
set up a versioning scheme. 

• Man-Y ong Lee sent in a correction to the example code in Section 2.4. 
• David Mayo pointed out that the word "unconsciously" in Chapter 1 needed to 

be changed to "subconsciously." 
• Chris McAloon sent in several corrections to Sections 3.9 and 3.10. 
• Matthew J. Moelter has been a long-time contributor who sent in numerous 

corrections to and suggestions for the book. 
• Simon Dicon Montford reported a missing function definition and several typos 

in Chapter 3. He also found errors in the increment function in Chapter 13. 
• John Ouzts corrected the definition of "return value" in Chapter 3. 
• Kevin Parks sent in valuable comments and suggestions as to how to improve the 

distribution of the book. 
• David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of 

encouragement. 
• Michael Schmitt sent in a correction to the chapter on files and exceptions. 
• Robin Shaw pointed out an error in Section 13.1, where the printTime function 

was used in an example without being defined. 
• Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen's Perl script 

that generates HTML from LaTeX. 
• Craig T. Snydal is testing the text in a course at Drew University. He has 

contributed several valuable suggestions and corrections. 
• Ian Thomas and his students are using the text in a programming course. They 

are the first ones to test the chapters in the latter half of the book, and they have 
made numerous corrections and suggestions. 

• Keith Verheyden sent in a correction in Chapter 3. 
• Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3. 
• Chris Wrobel made corrections to the code in the chapter on file 110 and 

exceptions. 
• Moshe Zadka has made invaluable contributions to this project. In addition 

to writing the first draft of the chapter on dictionaries, he provided continual 
guidance in the early stages of the book. 

• Christoph Zwerschke sent several corrections and pedagogic suggestions and 
explained the difference between gleich and selbe. 

• James Mayer sent us a whole slew of spelling and typographical errors, including 
two in the contributor list. 

• Hayden McAfee caught a potentially confusing inconsistency between two 
examples. 

• Angel Arnal is part of an international team of translators working on the Spanish 
version of the text. He has also found several errors in the English version. 

• Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and 
improved many of the other illustrations. 



Preface xv 

• Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting 
pedagogic comments and suggestions about Fibonacci and Old Maid. 

• Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2. 
• Kalin Harvey suggested a clarification in Chapter 7 and caught some typos. 
• Christopher P. Smith caught several typos and helped us update the book for 

Python 2.2. 
• David Hutchins caught a typo in the Foreword. 
• Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working 

on a German translation of the book, and he caught a couple of bad errors in 
Chapter 5. 

• Julie Peters caught a typo in the Preface. 
• Florin Oprina sent in an improvement in makeTime, a correction in printTime, 

and a nice typo. 
• D. J. Webre suggested a clarification in Chapter 3. 
• Ken found a fistful of errors in Chapters 8, 9, and 11. 
• Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3. 
• Curtis Yanko suggested a clarification in Chapter 2. 
• Ben Logan sent in a number of typos and problems with translating the book into 

HrML. 
• Jason Armstrong saw a missing word in Chapter 2. 
• Louis Cordier noticed a spot in Chapter 16 where the code didn't match the text. 
• Brian Cain suggested several clarifications in Chapters 2 and 3. 
• Rob Black sent in a passel of corrections, including some changes for Python 2.2. 
• Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including 

some updates for Python 2.2 and other thoughtful improvements. 
• Jason Mader at George Washington University made a number of useful 

suggestions and corrections. 
• Jan Gundtofte-Bruun reminded us that "a error" is an error. 
• Abel David and Alexis Dinno reminded us that the plural of "matrix" is "matri­

ces," not "matrixes." This error was in the book for years, but two readers with 
the same initials reported it on the same day. Weird. 

• Charles Thayer encouraged us to get rid of the semi-colons we had put at the ends 
of some statements and to clean up our use of "argument" and "parameter." 

• Roger Sperberg pointed out a twisted piece of logic in Chapter 3. 
• Sam Bull pointed out a confusing paragraph in Chapter 2. 
• Andrew Cheung pointed out two instances of "use before def." 
• C. Corey Capel spotted a missing word in the Third Theorem of Debugging and 

a typo in Chapter 4. 
• Alessandra helped clear up some Turtle confusion. 
• Wim Champagne found a brain-o in a dictionary example. 
• Douglas Wright pointed out a problem with floor division in arc. 
• Jared Spindor found some jetsam at the end of a sentence. 
• Lin Peiheng sent a number of very helpful suggestions. 
• Ray Hagtvedt sent in two errors and a not -quite-error. 
• Torsten Hiibsch pointed out an inconsistency in Swampy. 
• Inga Petuhhov corrected an example in Chapter 14. 
• Arne Babenhauserheide sent several helpful corrections. 



xvi Preface 

• Mark E. Casida is is good at spotting repeated words. 
• Scott Tyler filled in a that was missing. And then sent in a heap of corrections. 
• Gordon Shephard sent in several corrections, all in separate emails. 
• Andrew Turner spotted an error in Chapter 8. 
• Adam Hobart fixed a problem with floor division in arc. 
• Daryl Hammond and Sarah Zimmerman pointed out that I served up math. pi 

too early. And Zim spotted a typo. 
• George Sass found a bug in a Debugging section. 
• Brian Bingham suggested Exercise 11.9. 
• Leah Engelbert-Fenton pointed out that I used tuple as a variable name, contrary 

to my own advice. And then found a bunch of typos and a "use before def." 
• Joe Funke spotted a typo. 
• Chao-chao Chen found an inconsistency in the Fibonacci example. 
• Jeff Paine knows the difference between space and spam. 
• Lubos Pintes sent in a typo. 
• Gregg Lind and Abigail Heithoff suggested Exercise 14.6. 
• Max Hailperin has sent in a number of corrections and suggestions. Max is one 

of the authors of the extraordinary Concrete Abstractions, which you might want 
to read when you are done with this book. 

• Chotipat Pornavalai found an error in an error message. 
• Stanislaw Antol sent a list of very helpful suggestions. 
• Eric Pashman sent a number of corrections for Chapters 4-11. 
• Miguel Azevedo found some typos. 
• Jianhua Liu sent in a long list of corrections. 
• Nick King found a missing word. 
• Martin Zuther sent a long list of suggestions. 
• Adam Zimmerman found an inconsistency in my instance of an "instance" and 

several other errors. 
• Ratnakar Tiwari suggested a footnote explaining degenerate triangles. 
• Anurag Goel suggested another solution for is_abecedarian and sent some 

additional corrections. And he knows how to spell Jane Austen. 
• Kelli Kratzer spotted one of they typos. 
• Mark Griffiths pointed out a confusing example in Chapter 3. 
• Roydan Ongie found an error in my Newton's method. 
• Patryk Wolowiec helped me with a problem in the HTML version. 
• Karen Barber spotted the oldest typo in the book. 
• Nam Nguyen found a typo and pointed out that I used the Decorator pattern but 

didn't mention it by name. 
• Stephane Morin sent in several corrections and suggestions. 
• Paul Stoop corrected a typo in uses_only. 
• Eric Bronner pointed out a confusion in the discussion of the order of operations. 
• Alexandros Gezerlis set a new standard for the number and quality of suggestions 

he submitted. We are deeply grateful! 

Allen B. Downey 
Needham,MA 



Index 

abecedarian, 84, 97 
abs function, 60 
absolute path, 162, 169 
access, 104 
accumulato~ 116 

histogram, 150 
list, 109 
string, 205 
sum, 108 

Ackerman function, 71 
add method, 195 
addition with carrying, 79 
algorithm, 3, 8, 79, 154 

Euclid, 72 
MD5,170 
RSA,130 
square root, 80 

aliasUng, 112, 113,116,174, 177,200 
copying to avoid, 116 

alphabet, 45 
alternative execution, 48 
ambiguity, 6 
anagram, 117 
anagram set, 145, 166 
and operator, 47 
anydbm module, 164 
append method, 107, 114, 118,205,206 
arc function, 38 
argument, 21, 24, 27, 28, 32, 113 

gather, 136 
keyvvord, 40, 44, 142, 215 
list, 113 
optional, 88, 111, 124 
variable-length tuple, 136 

argument scatter, 137 
arithmetic operator, 14 
assert statement, 187 
assignment, 18, 73, 104 

augmented, 108, 116 
item, 86, 104, 134 
mUltiple, 80, 128 
tuple, 135, 136,138,144 

assignment statement, 11 
attribute 

_dict_, 198 
class, 202, 211 
initializing, 198 
Unstance, 173,179,203,211 

AttributeError, 179, 235 
augmented assignment, 108, 116 
Austen, Jane, 150 
available colors, 181, 200 

Bacon, Kem, 171 
Bangladesh, national flag, 180 
base case, 52, 55 
benchmarkUng,156,158 
big, hairy expression, 237 
bUnary search, 118 
bUndUng, 223,227 
bUngo, 145 
birthday, 188 
birthday paradox, 117 
bisect module, 118 
bisection search, 118 
bisection, debuggUng by, 79 
bitwise operator, 14 
body,24,32,55,75 

241 



242 Index 

bool type, 47 
boolean expression, 47, 55 
boolean function, 64, 183 
boolean operator, 89 
borrowing, subtraction with, 79, 186 
bound method, 221, 227 
bounding box, 180, 218, 227 
bracket 

squiggly, 119 
bracket operator, 82,104,134 
branch, 49, 55 
break statement, 76 
bug,3,8 

worst, 199 
worst ever, 229 

Button widget, 215 

calculator, 9, 20 
call graph, 127, 131 
Callable object, 223 
callback, 216,221,223, 226,227 
Canvas coordinate, 217,226 
Canvas item, 217 
Canvas object, 180 
Canvas widget, 216 
Car Talk, 101, 102, 132, 145 
Card class, 202 
card, playing, 201 
carrying, addition with, 79, 184, 185 
case-sensitivity, variable names, 18 
catch, 169 
chained conditional, 49, 55 
character, 82 
checksum, 170 
child class, 207, 211 
choice function, 149 
circle function, 38 
circular definition, 65 
class, 172, 179 

Card, 202 
child, 207, 211 
Date, 188 
Deck, 205 
Hand, 207 
Kangaroo, 199 
parent, 207 
Point, 172, 194 
Rectangle, 175 
SimpleTurtleWorld,220 
Time, 182 

class attribute, 202,211 
class definition, 172 

class diagram, 209, 211 
class object, 173, 179 
close method, 160, 165, 166 
crop function, 205 
_crop_ method, 204 
Collatz conjecture, 76 
colon, 24, 232 
color list, 181, 200 
comment, 17, 18 
commutativity, 16, 196 
compare function, 60 
comparison 

string, 89 
tuple, 141, 204 

compile, 2, 8 
composition, 23, 28, 32, 63, 205 
compound statement, 48, 55 
compression 

file, 166 
concatenation, 16, 18,28,84,86,111 

list, 106, 114, 118 
condition, 48, 55, 75, 233 
conditional, 232 

chained, 49, 55 
nested, 49, 56 

conditional execution, 48 
conditional operator, 204 
conditional statement, 48, 56, 64 
config method, 216 
consistency check, 130, 186 
conversion 

type, 21 
coordinate 

Canvas, 217, 226 
pixel, 226 

coordinate sequence, 217 
copy 

deep, 178 
shallow, 178 
slice, 86, 106 
to avoid aliasing, 116 

copy module, 177 
copying objects, 177 
count method, 89 
counter, 87,92, 121, 129 
counting and looping, 87 
crosswords, 95 
cummings, e. e., 3 
cumulative sum, 109 
Czech Republic, national flag, 181 

data structure, 143,144,155 
database, 164, 169,170 



Date class, 188 
datetime module, 188 
dead code, 60, 70, 236 
debugger (Pdb), 235 
debugging, 3, 7, 8, 17, 31,43,54,69,90, 100, 

115,130,143,157,168,179,187,198, 
210,226,231 

by bisection, 79 
emotional response, 7, 238 
experimental, 4 
superstition, 238 

Deck class, 205 
deck, playing cards, 205 
declaration, 128, 131 
decorate-sort-undecorate pattern, 142 
decrement, 75, 80 
deep copy, 178, 179 
deepcopy function, 178 
def keyword, 24 
default value, 152, 158, 193 

avoiding mutable, 199 
definition 

circular, 65 
class, 172 
function, 24 
recursive, 146 

del operator, 110 
deletion, element of list, 109 
delimiter, 111, 116 
deterministic, 148, 158 
development plan, 44 

encapsulation and generalization, 42 
incremental, 60, 231 
planned, 185 
problem recognition, 99, 100 
prototype and patch, 183, 185 
random walk programming, 157, 238 

diagram 
call graph, 131 
class, 209, 211 
object, 173, 175, 178, 179,182,203 
stack, 29,114 
state, 11,73,92,104,112,113,125,141, 
. 173,175,178,182,203 

_dict_ attribute, 198 
diet function, 119 
dictionary, 119,131,139,235 

initialize, 139 
invert, 125 
lookup, 123 
looping with, 123 
reverse lookup, 123 
subtraction, 152 

traversal, 140, 199 
dictionary methods 

anydbm module, 164 
Dijkstra, Edsger, 101 
direetory, 161, 169 

walk, 162 
working, 162 

dispatch 
type-based, 197 

dispatch, type-based, 196 
divisibility, 46 
division 

floating-point, 14 
floor, 14, 55 

divmod, 136, 186 
docstring, 43, 44, 172 
documentation, 9 
dot notation, 23, 32,87, 173,191,203 
double letters, 101 
Doyle, Arthur Conan, 4 
drag-and-drop, 225 
DSU pattern, 142, 144, 151 
duplicate, 117, 118, 131, 170 

Einstein, Albert, 40 
element, 103, 116 
element deletion, 109 
elif keyword, 49 
ellipses, 24 
else keyword, 48 
email address, 135 
embedded object, 175, 179,200 

copying, 178 
emotional debugging, 7, 238 
empty list, 103 
empty string, 92, 111 
encapsulation, 39, 44, 63, 79, 87, 208 
encode, 201, 211 
encrypt, 201 
encryption, 130 
end of line character, 169 
Entry widget, 218 
enumerate function, 139 
epsilon, 78 
equality and assignment, 73 
equivalence, 112 
equivalent, 116 
error 

compile-time, 231 
runtime, 4, 18, 52, 55,231 
semanti~4, 11,18,91,231,236 
shape, 143 
syntax, 3,17,231 

Index 243 



244 Index 

error checking, 68 
errornlessage, 3, 4, 7,11,18,231 
Euclid's algorithnl, 72 
eval function, 81 
evaluate, 15 
event, 227 
event handler, 224 
event loop, 215, 227 
Event object, 224 
event string, 224 
event-driven progranuning, 216, 226, 227 
exception, 4, 8, 18,231,234 

AttributeError, 179,235 
IndexError, 83, 91, 105,235 
IOError, 163 
KeyError, 120,235 
NanleError, 29, 235 
OvertlowError, 55 
RuntirneError, 52 
SyntaxError, 24 
TypeError, 83, 86, 126, 134, 137, 161,192, 

235 
UnboundLocalError,129 
ValueError,54, 124, 135 

exception, catching, 163 
executable, 2, 8 
exercise, secret, 169 
exists function, 162 
experinlental debugging, 4, 157 
expression, 14, 15, 18 

big and hairy, 237 
boolean, 47, 55 

extend nlethod, 107 

factorial function, 65, 68 
False special value, 47 
Fernlat's Last Theorenl, 56 
fibonacci function, 67,126 
file, 159 

conlpression, 166 
pemrission, 163 
reading and writing, 159 

file object, 95, 101 
filenanle,161 
filter pattern, 109, 117 
find function, 86 
flag, 128,131 
float function, 22 
float type, 10 
floating-point, 18, 78 
floating-point division, 14 
floor division, 14, 19, 55 

flow of execution, 26, 32, 68, 69, 75, 210, 
226,234 

flower, 45 
folder, 161 
for loop, 37,83, 105, 139 
fOrnlallanguage, 5, 8 
fOrnlat operator, 160,169,235 
fOrnlatsequence, 160, 169 
fOrnlat string, 160, 169 
frabjous, 65 
franle, 29, 32, 52, 66, 127 
Franle widget, 220 
frequency, 122 

letter, 145 
word, 147, 158 

fruitful function, 30, 32 
frustration, 238 
function, 24, 32, 189 

abs,6O 
ack,71 
arc, 38 
choice, 149 
circle, 38 
Cnlp,205 
conlpare, 60 
deepcopy,178 
dict,119 
enunlerate, 139 
eval,81 
exists, 162 
factorial, 65 
fibonacci, 67, 126 
find, 86 
float, 22 
getattr,199 
getcwd,161 
hasattr, 179, 198 
int,21 
isinstance, 68, 196 
len, 33, 83, 120 
list, 110 
log, 23 
nlax, 136, 137 
nlin, 136, 137 
open, 95, 96, 159,163,164 
polygon, 38 
popen,166 
randint, 117, 148 
randonl, 142, 148 
raw_input, 53 
recursive, 51 
reload, 168, 232 
repr,168 



reversed, 143 
shuflle, 207 
sorted,143 
sqrt, 23, 62 
str,22 
sum, 137 
tuple, 134 
type, 179 
zip, 138 

function argument, 27 
function call, 21, 32 
function composition, 63 
function definition, 24, 26, 32 
function frame, 29, 32, 52, 127 
function object, 25, 33 
function parameter, 27 
function syntax, 191 
function type 

modifier, 184 
pure, 183 

function, fruitful, 30 
function, math, 22 
function, reasons for, 31 
function, trigonometric, 23 
function, tuple as return value, 136 
function, void, 30 
functional programming style, 185, 188 

gamma function, 68 
gather, 136, 144 
GCD (greatest common divisor), 72 
generalization, 39, 44, 97,186 
geometry manager, 222, 227 
get method, 122 
getattr function, 199 
getcwd function, 161 
global statement, 128 
global variable, 128, 131 

update, 128 
GNU Free Documentation License, vi, vii 
graphical user interface, 214 
greatest common divisor (GCD), 72 
grid,34 
guardian pattern, 69, 70, 90 
GUl, 214, 227 
Gui module, 214 
gunzip (Unix command), 166 

Hand class, 207 
hanging, 233 
HAS-A relationship, 209, 211 
hasattr function, 179, 198 

hash function, 126, 131 
hashable, 126, 131, 140 
hashtable, 121, 131 
header, 24,32,232 
Hello, World, 6 
help utility, 9 
hexadecimal, 173 
high-level language, 1,8 
histogram, 122, 131 

random choice, 149, 153 
word frequencies, 149 

Holmes, Sherlock, 4 
homophone, 132 
HTMLParser module, 229 
hyperlink, 229 
hypotenuse, 63 

identical, 117 
identity, 112 
if statement, 48 
Image module, 228 
image viewer, 228 
IMDb (Internet Movie Database), 170 
immutability, 86, 92,113,126,133,142 
implementation, 121, 131, 155 
import statement, 32, 35, 168 
in operator, 89, 97,105,120 
increment, 75,80, 184, 192 
incremental development, 70, 231 
indentation, 24, 190,232 
index, 82,83,90,92, 104, 117,119,235 

looping with, 99, 105 
negative, 83 
slice,85,106 
starting at zero, 83, 104 

IndexError,83,91,105,235 
infinite loop, 75, 80, 215, 233 
infinite recursion, 52, 56, 68, 233, 234 
inheritance, 207, 211 
init method, 193, 198,202,205,208 
initialization 

variable, 80 
initialization (before update), 74 
instance, 36, 44, 173, 179 

as argument, 174 
as return value, 176 

instance attribute, 173, 179, 203, 211 
instantiation, 173 
int function, 21 
int type, 10 
integer, 19 

long, 129 

Index 245 



246 Index 

interactive mode, 2, 8, 13, 31 
interface, 40, 43, 44, 211 
interlocking words, 118 
Internet Movie Database (IMDb), 170 
interpret, 2, 8 
invariant, 187, 188,227 
invert dictionary, 125 
invocation, 88, 92 
IOError,163 
is operator, 112, 178 
IS-A relationship, 209, 211 
isinstance function, 68, 196 
item, 92, 103 

Canvas, 217, 227 
dictionary, 131 

item assignment, 86, 104, 134 
item update, 105 
items method, 139 
iteration, 73, 75, 80 

join method, 111,205 

Kangaroo class, 199 
Kevin Bacon Game, 171 
key, 119, 131 
key-value pair, 119, 131, 139 
keyboard input, 53 
KeyError, 120, 235 
keys method, 123 
keyword, 13, 19,232 

def,24 
elif,49 
else, 48 

keyword argument, 40, 44, 142,215,227 
Koch curve, 57 

Label widget, 215 
language 

formal,S 
high-level, 1 
low-level, 1 
natural,S 
programming, 1 
safe, 4 
Turing complete, 65 

leap of faith, 67 
len function, 33, 83, 120 
letter frequency, 145 
letter rotation, 94,132 
Linux,5 
lipogram, 97 

list, 103, 110, 117, 142 
as argument, 113 
comprehension, 109 
concatenation, 106, 114, 118 
copy, 106 
element, 104 
empty, 103 
function, 110 
index, 105 
membership, 105 
method, 107 
nested, 103, 106 
of objects, 205 
oftuples, 138 
operation, 106 
repetition, 106 
slice, 106 
traversal, 105, 117 

literalness, 6 
local variable, 28, 32 
log function, 23 
logarithm, 158 
logical operator, 46, 47 
long integer, 129 
lookup, 131 
lookup, dictionary, 123 
loop, 37, 44,75, 138 

condition, 233 
event, 215 
for, 37, 83, 105 
infinite, 75, 215, 233 
nested, 205 
traversal, 83 
while, 75 

looping 
with dictionaries, 123 
with indices, 99 
with strings, 87 

looping and counting, 87 
looping with indices, 105 
low-level language, 1, 8 
Is (Unix command), 166 

map pattern, 109, 117 
map to, 201 
mapping, 104,117, 154 
Markov analysis, 154 
mash-up, 155 
math function, 22 
max function, 136, 137 
McCloskey, Robert, 84 
MD5 algorithm, 170 



membership 
bisection search, 118 
dictionary, 120 
list, 105 
set, 121 

memo, 127, 131 
mental model, 236 
Menubutton widget, 223 
metaphor, method invocation, 191 
metathesis,145 
method,87,92,189,l99 

_cmp_,204 
_str_, 194,205 
add,195 
append,107,l14,205,206 
close, 160, 165, 166 
config, 216 
count,89 
extend,107 
get,122 
init,193,202,205,208 
items,139 
join, 111,205 
keys, 123 
mro,211 
pop, 109, 206 
radd,l97 
read,l66 
readline, 95, 166 
remove,l10 
replace, 147 
setdefault, 126 
sort,l07,l15,14I,207 
split, Ill, 135 
string, 93 
strip, 96,147 
translate, 147 
update,l40 
values,121 
void, 107 

method append, 118 
method resolution order, 211 
method syntax, 191 
method, bound, 221 
method,list,l07 
min function, 136, 137 
model, mental, 236 
modifier, 184,188 
module, 22, 32 

anydbm,l64 
bisect,118 
copy,177 
date time, 188 

Gui, 214 
HTMLParser, 229 
Image,228 
os,161 
pickle, 159, 165 
pprint,131 
profile, 156 
random, 117, 142,148,207 
reload, 168, 232 
shelve, 166, 170 
string, 147 
structshape, 143 
urllib, 169, 229 
Visual,2oo 
vpython, 200 
World,180 

module object, 22, 167 
module, writing, 167 
modulus operator, 46, 56 
Monty Python and the Holy Grail, 183 
MP3,170 
mro method, 211 
multiline string, 43, 232 

Index 247 

multiple assignment, 73, 80, 128 
multiplicity (in class diagram), 210, 211 
mutability, 86, 104,107,113,129,133,142, 

176 
mutable object, as default value, 199 

NameError, 29, 235 
natural language, 5, 8 
negative index, 83 
nested conditional, 49, 56 
nested list, 103, 106, 117 
newline, 53, 73, 205 
Newton's method, 77 
None special value, 31, 60, 71, 107, 110 
not operator, 47 
number, random, 148 

object, 86, 92, 111, 112, 117,172 
Callable, 223 
Canvas, 180 
class, 173 
copying, 177 
embedded,175,179,2oo 
Event, 224 
file, 95, 101 
function, 25, 33 
module, 167 
mutable, 176 
printing, 190 



248 Index 

object code, 2, 8 
objectdiagraDl,173,175,178,179,182,203 
object-oriented language, 199 
object-oriented progranuning, 189, 199, 207 
octal, 12 
odoDleter,101 
open function, 95, 96, 159, 163, 164 
operand, 14, 19 
operator, 19 

and, 47 
bitwise, 14 
boolean, 89 
bracket, 82, 104, 134 
conditional, 204 
del, 110 
fOrDlat, 160, 169, 235 
in, 89,97, 105, 120 
is, 112, 178 
logical, 46, 47 
Dlodulus, 46, 56 
not, 47 
or, 47 
overloading, 199 
relational, 47 
slice, 85, 92, 106,115,134 
string, 16 
update, 108 

operator overloading, 195, 204 
operator, arithmetic, 14 
option, 215, 228 
optional arguDlent, 88, 111, 124 
optional paraDleter, 152, 193 
or operator, 47 
order of operations, 15, 18, 237 
os Dlodule, 161 
other (paraDleter naDle), 193 
OverflowError,55 
overloading, 199 
override, 152, 158, 193,204,208,211 

packing widgets, 220, 228 
palindroDle,72,93,100-102 
paraDleter, 27, 29, 32, 113 

gather, l36 
optional, 152, 193 
other, 193 
self, 191 

parent class, 207, 211 
parentheses 

arguDlent in, 21 
eDlpty, 24, 88 
Dlatching, 3 

overriding precedence, 16 
paraDleters in, 27, 28 
parent class in, 207 
tuples in, l33 

parse,S, 8, 170 
pass stateDlent, 48 
path, 161, 169 

absolute, 162 
relative, 162 

pattern 
decorate-sort-undecorate, 142 
DSU, 142, 151 
filter, 109, 117 
guardian, 69,70, 90 
Dlap, 109, 117 
reduce, 108, 117 
search, 87, 92, 97, 124 , 
swap, l35 

pdb (Python debugger), 235 
PEMDAS,15 
peTDlission, file, 163 
persistence, 159, 169 
pi, 23, 81 
pickle Dlodule, 159, 165 
pickling, 165 
pie, 45 
PIL (Python IDlaging Library), 228 
pipe, 166, 170 
pixel coordinate, 226 
plain text, 95, 147, 170, 229 
planned developDlent, 185, 188 
playing card, Anglo-ADlerican, 201 
poetry, 6 
Point class, 172, 194 
point, DlatheDlatical, 172 
poker, 201, 212 
polygon function, 38 
polYDlorphisDl, 198, 199,210 
pop Dlethod, 109, 206 
popen function, 166 
portability, 1,8 
postcondition, 43, 69, 211 
pprint Dlodule, l31 
precedence, 19,237 
precondition, 43, 44, 69, 117,211 
prefix, 154 
pretty print, l31 
print stateDlent, 7, 8, 194, 235 
probleDl recognition, 99-101 
probleDl solving, 1, 8 
profile Dlodule, 156 
prograDl, 3, 8 
prograDl testing, 100 



prograonndng language, 1 
Project Gutenberg, 147 
prompt, 2, 8, 53 
prose, 6 
prototype and patch, 183, 185, 188 
pseudorandom, 148,158 
pure function, 183, 188 
~er,101,102,132,145 

Pythagorean theorem, 61 
Python 3.0, 7,14,53,130,138 
Python debugger (Pdb), 235 
Python Imaging Library (PIL), 228 
python.org, 9 

quotation mark, 7,10,11,43,85,232 

radd method, 197 
radian, 23 
rage, 238 
raise statement, 124, 187 
Ramanujan, Srinivasa, 81 
randintfunction,117,148 
random function, 142, 148 
random module, 117,142,148,207 
random number, 148 
random text, 155 
random walk prograonndng, 157, 238 
rank,201 
raw_input function, 53 
read method, 166 
readline method, 95,166 
Rectangle class, 175 
recursion, 50, 51,56,65,67 

base case, 52 
infinite, 52, 68, 234 

recursive definition, 65, 146 
reduce pattern, 108, 117 
reducible word, 132, 146 
redundancy, 6 
refactoring,41,42 
reference, 113, 117 

aliasing, 113 
relational operator, 47 
relative path, 162, 169 
reload function, 168, 232 
remove method, 110 
repetition, 36 

list, 106 
replace method, 147 
repr function, 168 
representation, 172, 175, 201 
return statement, 51, 59, 238 

return value, 21, 33, 59, 176 
tuple, 136 

reverse lookup, dictionary, 123, 131 
reverse word pair, 118 
reversed function, 143 
rotation 

letters, 132 
rotation, letter, 94 
RSA algorithm, 130 
rules of precedence, 15, 19 
running pace, 9, 20, 188 
runtime error, 4, 18, 52, 55, 231, 234 
RuntimeError, 52,68 

safe language, 4 
sanity check, 130 
scaffolding,62,71,131 
scatter, 137, 144 
Scrabble, 145 
script, 2, 8 
scriptmode,2,9,13,31 
search,124 
search pattern. 87, 92, 97 
search,binary, 118 
search, bisection, 118 
secret exercise, 169 
self (parameter name), 191 

Index 249 

semantic error, 4, 9,11,18,91,231,236 
semantics, 4, 9,189 
sequence,82,92,103,110,133,142 

coordinate, 217 
set, 153 

anagram, 145, 166 
set membership, 121 
setdefault method, 126 
sexagesimal, 185 
shallow copy, 178, 179 
shape,l44 
shape error, 143 
shell, 166 
shelve module, 166, 170 
shuffle function, 207 
SimpleTurtleWorId class, 220 
sine function, 23 
singleton, 125, 131, 133 
slice, 92 

copy,86,I06 
list, 106 
string, 85 
tuple, 134 
update, 107 



005.133 
DO-PY 

72299 C1 

PYTHON FOR SOFTWARE DESIGN: 
HOW TO THINK LIKE A COMPUTER 
SCIENTIST 

72299 



Python for Software Design is a concise introduction to software design usingthe Python 
program m i ng language. I ntended for people with no program m i ng experience, th i s 
book starts with the most basic concepts and gradually adds new material. Some of 
the ideas students find most challenging, like recursion and object-oriented pro­
gramming, are divided into a sequence of smaller steps and introduced overthe 
course of several chapters. The focus is on the programming process, with special 
emphasis on debugging. The book includes a wide range of exercises, from short 
examples to substantial projects, so that students have ample opportunityto prac­
tice each new concept. 

Exercise solutions and code examples along with Swampy, a suite of Python pro­
grams that is used in some of the exercises, are available from thinkpython.com. 

Allen B. Downey, Ph.D., is an Associate Professor of Computer Science at the Olin 
College ofEngi neeri ng i n Need ham, Massach usetts. He has taught at Wellesley Col­
lege, Colby College, and UC Berkeley. He has a doctorate in computer science from 
UC Berkeley and a master's degree from MIT. Professor Downey is the author of a 
previous version of this book, titled Howto Think Like a Computer Scientist: Learning with 
Python, which he self-published in 2001. 

Couer design by Dauid Leuy 

CAMBRIDGE 
C!'\IVERSITY PRE 
www.cambridge.org 

ISBN 978-0-521-72596-5 

111111111111111111111111111111 
9 780521 725965 > 


	72299-0001
	72299-0004
	72299-0006
	72299-0007
	72299-0008
	72299-0009
	72299-0010
	72299-0011
	72299-0012
	72299-0013
	72299-0014
	72299-0015
	72299-0016
	72299-0017
	72299-0018
	72299-0019
	72299-0022
	72299-0023
	72299-0024
	72299-0025
	72299-0026
	72299-0027
	72299-0028
	72299-0029
	72299-0030
	72299-0032
	72299-0033

