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Preface 

THE STRANGE HISTORY OF THIS BOOK 

In January 1999, I was preparing to teach an introductory programming class in Java. 
I had taught it three times and I was getting frustrated. The failure rate in the class 
was too high, and, even for students who succeeded, the overall level of achievement 
was too low. 

One of the problems I saw was the books. I had tried three different books (and had 
read a dozen more), and they all had the same problems. They were too big, with 
too much unnecessary detail about Java and not enough high-level guidance about 
how to program. And they all suffered from the trap door effect: they would start out 
easy, proceed gradually, and then somewhere around Chapter 4 the bottom would 
fall out. The students would get too much new material, too fast, and I would spend 
the rest of the semester picking up the pieces. 

Two weeks before the first day of classes, I decided to write my own book. I wrote 
one 10-page chapter a day for 13 days. I made some revisions on Day 14 and then 
sent it out to be photocopied. 

My goals were: 

• Keep it short. It is better for students to read 10 pages than not read 50 pages. 
• Be careful with vocabulary. I tried to minimize the jargon and define each term 

at first use. 
• Build gradually. To avoid trap doors, I took the most difficult topics and split 

them into a series of small steps. 
• Focus on programming, not the programming language. I included the minimum 

useful subset of Java and left out the rest. 

I needed a title, so on a whim I chose How to Think Like a Computer Scientist. 

xi 
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My first version was rough, but it worked. Students did the reading, and they under­
stood enough that I could spend class time on the hard topics, the interesting topics, 
and (most important) letting the students practice. 

I released the book under the GNU Free Documentation License, which allows users 
to copy, modify, and distribute the book. 

What happened next is the cool part. Jeff Elkner, a high school teacher in Vir­
ginia, adopted my book and translated it into Python. He sent me a copy of his 
translation, and I had the unusual experience of learning Python by reading my 
own book. 

Jeff and I revised the book, incorporated a case study by Chris Meyers, and in 2001 
we released How to Think Like a Computer Scientist: Learning with Python, also 
under the GNU Free Documentation License. As Green Tea Press, I published the 
book and started selling hard copies through Amazon.com and college book stores. 
Other books from Green Tea Press are available at greenteapress. com. 

In 2003, I started teaching at Olin College, and I got to teach Python for the first time. 
The contrast with Java was striking. Students struggled less, learned more, worked 
on more interesting projects, and generally had a lot more fun. 

Over the last five years I have continued to develop the book, correcting errors, 
improving some of the examples, and adding material, especially exercises. In 2008, 
I started work on a major revision of the book - at the same time, I was contacted by 
an editor at Cambridge University Press who was interested in publishing the next 
edition. Good timing! 

The result is this book, now with the less grandiose title Python for Software Design. 
Some of the changes are: 

• I added a section about debugging at the end of each chapter. These sections 
present general techniques for finding and avoiding bugs, and warnings about 
Python pitfalls. 

• I removed the material in the last few chapters about the implementation of lists 
and trees. I still love those topics, but I thought they were incongruent with the 
rest of the book. 

• I added more exercises, ranging from short tests of understanding to a few 
substantial projects. 

• I added a series of case studies - longer examples with exercises, solutions, and 
discussion. Some of them are based on Swampy, a suite of Python programs I 
wrote for use in my classes. Swampy, code examples, and some solutions are 
available from thinkpython. com. 

• I expanded the discussion of program development plans and basic design 
patterns. 

• The use of Python is more idiomatic. The book is still about programming, not 
Python, but now I think the book gets more leverage from the language. 

I hope you enjoy working with this book, and that it helps you learn to program and 
think, at least a little bit, like a computer scientist. 
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coordinate sequence, 217 
copy 

deep, 178 
shallow, 178 
slice, 86, 106 
to avoid aliasing, 116 

copy module, 177 
copying objects, 177 
count method, 89 
counter, 87,92, 121, 129 
counting and looping, 87 
crosswords, 95 
cummings, e. e., 3 
cumulative sum, 109 
Czech Republic, national flag, 181 

data structure, 143,144,155 
database, 164, 169,170 



Date class, 188 
datetime module, 188 
dead code, 60, 70, 236 
debugger (Pdb), 235 
debugging, 3, 7, 8, 17, 31,43,54,69,90, 100, 

115,130,143,157,168,179,187,198, 
210,226,231 

by bisection, 79 
emotional response, 7, 238 
experimental, 4 
superstition, 238 

Deck class, 205 
deck, playing cards, 205 
declaration, 128, 131 
decorate-sort-undecorate pattern, 142 
decrement, 75, 80 
deep copy, 178, 179 
deepcopy function, 178 
def keyword, 24 
default value, 152, 158, 193 

avoiding mutable, 199 
definition 

circular, 65 
class, 172 
function, 24 
recursive, 146 

del operator, 110 
deletion, element of list, 109 
delimiter, 111, 116 
deterministic, 148, 158 
development plan, 44 

encapsulation and generalization, 42 
incremental, 60, 231 
planned, 185 
problem recognition, 99, 100 
prototype and patch, 183, 185 
random walk programming, 157, 238 

diagram 
call graph, 131 
class, 209, 211 
object, 173, 175, 178, 179,182,203 
stack, 29,114 
state, 11,73,92,104,112,113,125,141, 
. 173,175,178,182,203 

_dict_ attribute, 198 
diet function, 119 
dictionary, 119,131,139,235 

initialize, 139 
invert, 125 
lookup, 123 
looping with, 123 
reverse lookup, 123 
subtraction, 152 

traversal, 140, 199 
dictionary methods 

anydbm module, 164 
Dijkstra, Edsger, 101 
direetory, 161, 169 

walk, 162 
working, 162 

dispatch 
type-based, 197 

dispatch, type-based, 196 
divisibility, 46 
division 

floating-point, 14 
floor, 14, 55 

divmod, 136, 186 
docstring, 43, 44, 172 
documentation, 9 
dot notation, 23, 32,87, 173,191,203 
double letters, 101 
Doyle, Arthur Conan, 4 
drag-and-drop, 225 
DSU pattern, 142, 144, 151 
duplicate, 117, 118, 131, 170 

Einstein, Albert, 40 
element, 103, 116 
element deletion, 109 
elif keyword, 49 
ellipses, 24 
else keyword, 48 
email address, 135 
embedded object, 175, 179,200 

copying, 178 
emotional debugging, 7, 238 
empty list, 103 
empty string, 92, 111 
encapsulation, 39, 44, 63, 79, 87, 208 
encode, 201, 211 
encrypt, 201 
encryption, 130 
end of line character, 169 
Entry widget, 218 
enumerate function, 139 
epsilon, 78 
equality and assignment, 73 
equivalence, 112 
equivalent, 116 
error 

compile-time, 231 
runtime, 4, 18, 52, 55,231 
semanti~4, 11,18,91,231,236 
shape, 143 
syntax, 3,17,231 
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error checking, 68 
errornlessage, 3, 4, 7,11,18,231 
Euclid's algorithnl, 72 
eval function, 81 
evaluate, 15 
event, 227 
event handler, 224 
event loop, 215, 227 
Event object, 224 
event string, 224 
event-driven progranuning, 216, 226, 227 
exception, 4, 8, 18,231,234 

AttributeError, 179,235 
IndexError, 83, 91, 105,235 
IOError, 163 
KeyError, 120,235 
NanleError, 29, 235 
OvertlowError, 55 
RuntirneError, 52 
SyntaxError, 24 
TypeError, 83, 86, 126, 134, 137, 161,192, 

235 
UnboundLocalError,129 
ValueError,54, 124, 135 

exception, catching, 163 
executable, 2, 8 
exercise, secret, 169 
exists function, 162 
experinlental debugging, 4, 157 
expression, 14, 15, 18 

big and hairy, 237 
boolean, 47, 55 

extend nlethod, 107 

factorial function, 65, 68 
False special value, 47 
Fernlat's Last Theorenl, 56 
fibonacci function, 67,126 
file, 159 

conlpression, 166 
pemrission, 163 
reading and writing, 159 

file object, 95, 101 
filenanle,161 
filter pattern, 109, 117 
find function, 86 
flag, 128,131 
float function, 22 
float type, 10 
floating-point, 18, 78 
floating-point division, 14 
floor division, 14, 19, 55 

flow of execution, 26, 32, 68, 69, 75, 210, 
226,234 

flower, 45 
folder, 161 
for loop, 37,83, 105, 139 
fOrnlallanguage, 5, 8 
fOrnlat operator, 160,169,235 
fOrnlatsequence, 160, 169 
fOrnlat string, 160, 169 
frabjous, 65 
franle, 29, 32, 52, 66, 127 
Franle widget, 220 
frequency, 122 

letter, 145 
word, 147, 158 

fruitful function, 30, 32 
frustration, 238 
function, 24, 32, 189 

abs,6O 
ack,71 
arc, 38 
choice, 149 
circle, 38 
Cnlp,205 
conlpare, 60 
deepcopy,178 
dict,119 
enunlerate, 139 
eval,81 
exists, 162 
factorial, 65 
fibonacci, 67, 126 
find, 86 
float, 22 
getattr,199 
getcwd,161 
hasattr, 179, 198 
int,21 
isinstance, 68, 196 
len, 33, 83, 120 
list, 110 
log, 23 
nlax, 136, 137 
nlin, 136, 137 
open, 95, 96, 159,163,164 
polygon, 38 
popen,166 
randint, 117, 148 
randonl, 142, 148 
raw_input, 53 
recursive, 51 
reload, 168, 232 
repr,168 



reversed, 143 
shuflle, 207 
sorted,143 
sqrt, 23, 62 
str,22 
sum, 137 
tuple, 134 
type, 179 
zip, 138 

function argument, 27 
function call, 21, 32 
function composition, 63 
function definition, 24, 26, 32 
function frame, 29, 32, 52, 127 
function object, 25, 33 
function parameter, 27 
function syntax, 191 
function type 

modifier, 184 
pure, 183 

function, fruitful, 30 
function, math, 22 
function, reasons for, 31 
function, trigonometric, 23 
function, tuple as return value, 136 
function, void, 30 
functional programming style, 185, 188 

gamma function, 68 
gather, 136, 144 
GCD (greatest common divisor), 72 
generalization, 39, 44, 97,186 
geometry manager, 222, 227 
get method, 122 
getattr function, 199 
getcwd function, 161 
global statement, 128 
global variable, 128, 131 

update, 128 
GNU Free Documentation License, vi, vii 
graphical user interface, 214 
greatest common divisor (GCD), 72 
grid,34 
guardian pattern, 69, 70, 90 
GUl, 214, 227 
Gui module, 214 
gunzip (Unix command), 166 

Hand class, 207 
hanging, 233 
HAS-A relationship, 209, 211 
hasattr function, 179, 198 

hash function, 126, 131 
hashable, 126, 131, 140 
hashtable, 121, 131 
header, 24,32,232 
Hello, World, 6 
help utility, 9 
hexadecimal, 173 
high-level language, 1,8 
histogram, 122, 131 

random choice, 149, 153 
word frequencies, 149 

Holmes, Sherlock, 4 
homophone, 132 
HTMLParser module, 229 
hyperlink, 229 
hypotenuse, 63 

identical, 117 
identity, 112 
if statement, 48 
Image module, 228 
image viewer, 228 
IMDb (Internet Movie Database), 170 
immutability, 86, 92,113,126,133,142 
implementation, 121, 131, 155 
import statement, 32, 35, 168 
in operator, 89, 97,105,120 
increment, 75,80, 184, 192 
incremental development, 70, 231 
indentation, 24, 190,232 
index, 82,83,90,92, 104, 117,119,235 

looping with, 99, 105 
negative, 83 
slice,85,106 
starting at zero, 83, 104 

IndexError,83,91,105,235 
infinite loop, 75, 80, 215, 233 
infinite recursion, 52, 56, 68, 233, 234 
inheritance, 207, 211 
init method, 193, 198,202,205,208 
initialization 

variable, 80 
initialization (before update), 74 
instance, 36, 44, 173, 179 

as argument, 174 
as return value, 176 

instance attribute, 173, 179, 203, 211 
instantiation, 173 
int function, 21 
int type, 10 
integer, 19 

long, 129 
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interactive mode, 2, 8, 13, 31 
interface, 40, 43, 44, 211 
interlocking words, 118 
Internet Movie Database (IMDb), 170 
interpret, 2, 8 
invariant, 187, 188,227 
invert dictionary, 125 
invocation, 88, 92 
IOError,163 
is operator, 112, 178 
IS-A relationship, 209, 211 
isinstance function, 68, 196 
item, 92, 103 

Canvas, 217, 227 
dictionary, 131 

item assignment, 86, 104, 134 
item update, 105 
items method, 139 
iteration, 73, 75, 80 

join method, 111,205 

Kangaroo class, 199 
Kevin Bacon Game, 171 
key, 119, 131 
key-value pair, 119, 131, 139 
keyboard input, 53 
KeyError, 120, 235 
keys method, 123 
keyword, 13, 19,232 

def,24 
elif,49 
else, 48 

keyword argument, 40, 44, 142,215,227 
Koch curve, 57 

Label widget, 215 
language 

formal,S 
high-level, 1 
low-level, 1 
natural,S 
programming, 1 
safe, 4 
Turing complete, 65 

leap of faith, 67 
len function, 33, 83, 120 
letter frequency, 145 
letter rotation, 94,132 
Linux,5 
lipogram, 97 

list, 103, 110, 117, 142 
as argument, 113 
comprehension, 109 
concatenation, 106, 114, 118 
copy, 106 
element, 104 
empty, 103 
function, 110 
index, 105 
membership, 105 
method, 107 
nested, 103, 106 
of objects, 205 
oftuples, 138 
operation, 106 
repetition, 106 
slice, 106 
traversal, 105, 117 

literalness, 6 
local variable, 28, 32 
log function, 23 
logarithm, 158 
logical operator, 46, 47 
long integer, 129 
lookup, 131 
lookup, dictionary, 123 
loop, 37, 44,75, 138 

condition, 233 
event, 215 
for, 37, 83, 105 
infinite, 75, 215, 233 
nested, 205 
traversal, 83 
while, 75 

looping 
with dictionaries, 123 
with indices, 99 
with strings, 87 

looping and counting, 87 
looping with indices, 105 
low-level language, 1, 8 
Is (Unix command), 166 

map pattern, 109, 117 
map to, 201 
mapping, 104,117, 154 
Markov analysis, 154 
mash-up, 155 
math function, 22 
max function, 136, 137 
McCloskey, Robert, 84 
MD5 algorithm, 170 



membership 
bisection search, 118 
dictionary, 120 
list, 105 
set, 121 

memo, 127, 131 
mental model, 236 
Menubutton widget, 223 
metaphor, method invocation, 191 
metathesis,145 
method,87,92,189,l99 

_cmp_,204 
_str_, 194,205 
add,195 
append,107,l14,205,206 
close, 160, 165, 166 
config, 216 
count,89 
extend,107 
get,122 
init,193,202,205,208 
items,139 
join, 111,205 
keys, 123 
mro,211 
pop, 109, 206 
radd,l97 
read,l66 
readline, 95, 166 
remove,l10 
replace, 147 
setdefault, 126 
sort,l07,l15,14I,207 
split, Ill, 135 
string, 93 
strip, 96,147 
translate, 147 
update,l40 
values,121 
void, 107 

method append, 118 
method resolution order, 211 
method syntax, 191 
method, bound, 221 
method,list,l07 
min function, 136, 137 
model, mental, 236 
modifier, 184,188 
module, 22, 32 

anydbm,l64 
bisect,118 
copy,177 
date time, 188 

Gui, 214 
HTMLParser, 229 
Image,228 
os,161 
pickle, 159, 165 
pprint,131 
profile, 156 
random, 117, 142,148,207 
reload, 168, 232 
shelve, 166, 170 
string, 147 
structshape, 143 
urllib, 169, 229 
Visual,2oo 
vpython, 200 
World,180 

module object, 22, 167 
module, writing, 167 
modulus operator, 46, 56 
Monty Python and the Holy Grail, 183 
MP3,170 
mro method, 211 
multiline string, 43, 232 

Index 247 

multiple assignment, 73, 80, 128 
multiplicity (in class diagram), 210, 211 
mutability, 86, 104,107,113,129,133,142, 

176 
mutable object, as default value, 199 

NameError, 29, 235 
natural language, 5, 8 
negative index, 83 
nested conditional, 49, 56 
nested list, 103, 106, 117 
newline, 53, 73, 205 
Newton's method, 77 
None special value, 31, 60, 71, 107, 110 
not operator, 47 
number, random, 148 

object, 86, 92, 111, 112, 117,172 
Callable, 223 
Canvas, 180 
class, 173 
copying, 177 
embedded,175,179,2oo 
Event, 224 
file, 95, 101 
function, 25, 33 
module, 167 
mutable, 176 
printing, 190 
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object code, 2, 8 
objectdiagraDl,173,175,178,179,182,203 
object-oriented language, 199 
object-oriented progranuning, 189, 199, 207 
octal, 12 
odoDleter,101 
open function, 95, 96, 159, 163, 164 
operand, 14, 19 
operator, 19 

and, 47 
bitwise, 14 
boolean, 89 
bracket, 82, 104, 134 
conditional, 204 
del, 110 
fOrDlat, 160, 169, 235 
in, 89,97, 105, 120 
is, 112, 178 
logical, 46, 47 
Dlodulus, 46, 56 
not, 47 
or, 47 
overloading, 199 
relational, 47 
slice, 85, 92, 106,115,134 
string, 16 
update, 108 

operator overloading, 195, 204 
operator, arithmetic, 14 
option, 215, 228 
optional arguDlent, 88, 111, 124 
optional paraDleter, 152, 193 
or operator, 47 
order of operations, 15, 18, 237 
os Dlodule, 161 
other (paraDleter naDle), 193 
OverflowError,55 
overloading, 199 
override, 152, 158, 193,204,208,211 

packing widgets, 220, 228 
palindroDle,72,93,100-102 
paraDleter, 27, 29, 32, 113 

gather, l36 
optional, 152, 193 
other, 193 
self, 191 

parent class, 207, 211 
parentheses 

arguDlent in, 21 
eDlpty, 24, 88 
Dlatching, 3 

overriding precedence, 16 
paraDleters in, 27, 28 
parent class in, 207 
tuples in, l33 

parse,S, 8, 170 
pass stateDlent, 48 
path, 161, 169 

absolute, 162 
relative, 162 

pattern 
decorate-sort-undecorate, 142 
DSU, 142, 151 
filter, 109, 117 
guardian, 69,70, 90 
Dlap, 109, 117 
reduce, 108, 117 
search, 87, 92, 97, 124 , 
swap, l35 

pdb (Python debugger), 235 
PEMDAS,15 
peTDlission, file, 163 
persistence, 159, 169 
pi, 23, 81 
pickle Dlodule, 159, 165 
pickling, 165 
pie, 45 
PIL (Python IDlaging Library), 228 
pipe, 166, 170 
pixel coordinate, 226 
plain text, 95, 147, 170, 229 
planned developDlent, 185, 188 
playing card, Anglo-ADlerican, 201 
poetry, 6 
Point class, 172, 194 
point, DlatheDlatical, 172 
poker, 201, 212 
polygon function, 38 
polYDlorphisDl, 198, 199,210 
pop Dlethod, 109, 206 
popen function, 166 
portability, 1,8 
postcondition, 43, 69, 211 
pprint Dlodule, l31 
precedence, 19,237 
precondition, 43, 44, 69, 117,211 
prefix, 154 
pretty print, l31 
print stateDlent, 7, 8, 194, 235 
probleDl recognition, 99-101 
probleDl solving, 1, 8 
profile Dlodule, 156 
prograDl, 3, 8 
prograDl testing, 100 



prograonndng language, 1 
Project Gutenberg, 147 
prompt, 2, 8, 53 
prose, 6 
prototype and patch, 183, 185, 188 
pseudorandom, 148,158 
pure function, 183, 188 
~er,101,102,132,145 

Pythagorean theorem, 61 
Python 3.0, 7,14,53,130,138 
Python debugger (Pdb), 235 
Python Imaging Library (PIL), 228 
python.org, 9 

quotation mark, 7,10,11,43,85,232 

radd method, 197 
radian, 23 
rage, 238 
raise statement, 124, 187 
Ramanujan, Srinivasa, 81 
randintfunction,117,148 
random function, 142, 148 
random module, 117,142,148,207 
random number, 148 
random text, 155 
random walk prograonndng, 157, 238 
rank,201 
raw_input function, 53 
read method, 166 
readline method, 95,166 
Rectangle class, 175 
recursion, 50, 51,56,65,67 

base case, 52 
infinite, 52, 68, 234 

recursive definition, 65, 146 
reduce pattern, 108, 117 
reducible word, 132, 146 
redundancy, 6 
refactoring,41,42 
reference, 113, 117 

aliasing, 113 
relational operator, 47 
relative path, 162, 169 
reload function, 168, 232 
remove method, 110 
repetition, 36 

list, 106 
replace method, 147 
repr function, 168 
representation, 172, 175, 201 
return statement, 51, 59, 238 

return value, 21, 33, 59, 176 
tuple, 136 

reverse lookup, dictionary, 123, 131 
reverse word pair, 118 
reversed function, 143 
rotation 

letters, 132 
rotation, letter, 94 
RSA algorithm, 130 
rules of precedence, 15, 19 
running pace, 9, 20, 188 
runtime error, 4, 18, 52, 55, 231, 234 
RuntimeError, 52,68 

safe language, 4 
sanity check, 130 
scaffolding,62,71,131 
scatter, 137, 144 
Scrabble, 145 
script, 2, 8 
scriptmode,2,9,13,31 
search,124 
search pattern. 87, 92, 97 
search,binary, 118 
search, bisection, 118 
secret exercise, 169 
self (parameter name), 191 
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semantic error, 4, 9,11,18,91,231,236 
semantics, 4, 9,189 
sequence,82,92,103,110,133,142 

coordinate, 217 
set, 153 

anagram, 145, 166 
set membership, 121 
setdefault method, 126 
sexagesimal, 185 
shallow copy, 178, 179 
shape,l44 
shape error, 143 
shell, 166 
shelve module, 166, 170 
shuffle function, 207 
SimpleTurtleWorId class, 220 
sine function, 23 
singleton, 125, 131, 133 
slice, 92 

copy,86,I06 
list, 106 
string, 85 
tuple, 134 
update, 107 
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