Declaration

Arab Academy for Science, Technology and Maritime Transport

College of Engineering and Technology
Department of Industrial
&
Management Engineering

A Genetic Algorithms Approach to the Group Technology Problem

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering

Submitted By:

Eng. Hatim Hassan Sharif

Prof. Dr. Wageeh Badawi
Examiner

Prof. Dr. Hassan El-Hofy
Examiner

Prof. Dr. Mostafa Helaly
Supervisor

Dr. Khaled Saied El Kilany
Supervisor
ABSTRACT

In recent years, the process of cellular manufacturing and group technology has received much attention and popularity in many developed countries. By applying Group technology, many benefits of flow-line production can be attained in a batch production system. GT can improve material handling, and significantly reduce material flow time and distance, and setup times.

In this thesis, a two steps approach to solve the GT problem using Genetic Algorithms is presented. The first step is to assign parts to the best available machines according to their required specifications. The second step is to form manufacturing cells (groups). The proposed GA model has the flexibility of choosing the number of cells required, which is very useful in examining different manufacturing cell configurations; or in case that the workshop or factory prefers a certain number of cells. For example if the workshop or factory doesn't have the workspace required for more than four cells.

To verify and validate the obtained results, the results of the first step are compared to the results of an exhaustive enumeration model, and the results of the second step are compared to the well known rank order clustering and direct clustering techniques. The results in both steps were found satisfactory. Additionally, the proposed model is used to solve some problems from the literature, and the results were compared to other techniques. The model produced satisfactory results, and in some cases, the results obtained were superior to the results obtained by other techniques.
ACKNOWLEDGMENT

I would like to thank God, the most merciful, for his blessings, mercy and help that he always gives me through all my life.

To my Father and Mother, who always ask God to give me happiness & success. Thank you for support, courage, kindness and help that you always give me.

To all my friends and family, thank you for giving me all your support and attention.

I would also like to express my deepest thanks and gratitude to my supervisors Dr. Khaled S. El-Kilany, and Prof. Mustafa Hilaly, for their continuous support.

Special thanks to Prof. Ahmed Farouq and Eng. Mootaz Mamdouh for their valuable contribution and support.

Hatim Hassan Sharif.
TABLE OF CONTENTS

LIST OF FIGURES.. IV

LIST OF TABLES... VI

ABBREVIATIONS... VII

ABSTRACT ... VIII

1 INTRODUCTION... 1

1.1 Aim and Objectives ... 2
 1.1.1 Aim of the Work ... 2
 1.1.2 Objectives ... 2

1.2 Thesis Outline ... 3

2 LITERATURE REVIEW ... 4

2.1 Overview and Background ... 4
 2.1.1 Benefits of Group Technology ... 5
 2.1.2 Disadvantages of Group Technology ... 7

2.2 Approaches to Group Technology Problem .. 8
 2.2.1 Classical Approaches ... 9
 2.2.2 Modern Approaches ... 10
 2.2.3 Other Approaches .. 13
 2.2.4 Research Papers Survey .. 14
 2.2.5 Selecting a Solving Technique ... 16

2.3 Genetic Algorithms ... 17
 2.3.1 Genetic Algorithms Parameters .. 17
 2.3.2 Logic Structure of the Genetic Algorithms Process ... 18
 2.3.3 Genetic Algorithms Operators .. 20

2.4 Genetic Algorithms Approaches to the Group Technology Problem .. 21

3 PROBLEM FORMULATION AND CASE STUDY .. 24

3.1 Problem Statement ... 24

3.2 Problem Simplification .. 25

3.3 Problem Mathematical Formulation ... 26
 3.3.1 Step One Mathematical Formulation .. 26
 3.3.2 Step Two Mathematical Formulation .. 27

3.4 Case Study Data Collection .. 28
 3.4.1 Machines Specifications .. 29
 3.4.2 Parts Specifications .. 30

4 MODEL DEVELOPMENT .. 31

4.1 Introduction .. 31

4.2 Step 1: Selecting The Best Machine(s) for Parts .. 32
4.2.1 Gene Hunter ... 32
4.2.2 GA Model Description .. 33
4.3 Step 2: Forming Manufacturing Cells 41
 4.3.1 GA Model Description .. 42
 4.3.2 GA Model Mechanism .. 44
 4.3.3 Model Constraints and Penalty factors 45
4.4 Comparing Other Clustering Techniques to Genetic Algorithm Model 46
 4.4.1 Rank Order Clustering .. 46
 4.4.2 Direct Clustering Algorithm .. 47
4.5 Models Verification and Validation ... 47
 4.5.1 Models Verification ... 47
 4.5.2 Models Validation ... 48

5 EXPERIMENTATION, RESULTS, AND ANALYSIS .. 54
5.1 Experiments Description .. 54
5.2 Measurement of Performance .. 54
 5.2.1 Grouping Efficiency .. 54
 5.2.2 Grouping Efficacy ... 55
5.3 Set 1: Models Validation ... 55
 5.3.1 Step One Validation ... 55
 5.3.2 Step Two Validation ... 59
5.4 Set 2: Case Study Results .. 61
 5.4.1 GA Model Step Two Results .. 61
 5.4.2 Results Analysis ... 64
5.5 Case Study Results using ROC and DCA 66
 5.5.1 Rank Order Clustering Results 66
 5.5.2 Direct Clustering Algorithm Results 66
5.6 Set 3: Comparing Other Clustering Techniques to The Proposed Genetic Algorithms Model .. 67

6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 69
6.1 Conclusions and Final Remarks ... 69
6.2 Recommendations for Future work ... 70

REFERENCES .. 71

APPENDICES .. 76
LIST OF FIGURES

Figure 2-1: Process-type layout. ... 6
Figure 2-2: Group Technology layout .. 6
Figure 2-3: Approaches to the Group technology Problem. 8
Figure 2-4: Fuzzy set. ... 12
Figure 2-5: Pie chart showing the different modern techniques used to solve GT problem. 16
Figure 2-6: Search papers time distribution. .. 16
Figure 2-7: Logic Structure of Genetic Algorithms. 19
Figure 2-8: The Population contains a number of Chromosomes 19
Figure 2-9: Each Chromosome contains a number of Genes. 20
Figure 2-10: Crossover operation. ... 20
Figure 2-11: Mutation operation ... 21
Figure 3-1: Clustered part-machine matrix with bottlenecks............................ 24
Figure 3-2: Work-part dimensions. .. 26
Figure 4-1: Proposed method solution procedure. 31
Figure 4-2: The main interface of Gene Hunter. .. 33
Figure 4-3: Options page in Gene Hunter ... 33
Figure 4-4: Machines Specs Section. .. 35
Figure 4-5: Parts Specs Section. ... 36
Figure 4-6: Extracted machines section. ... 36
Figure 4-7: Extracted parts section. .. 37
Figure 4-8: Chromosomes and suitability comparisons section. 37
Figure 4-9: Constraints and conditions section. ... 38
Figure 4-10: Parts and machines chromosomes structure. 38
Figure 4-11: Extracted M/C Specifications based on M/C Chromosome Values 40
Figure 4-12: Extracted Part Specifications based on part Chromosome Values 40
Figure 4-13: Un-clustered data section ... 42
Figure 4-14: Distance calculations section. ... 42
Figure 4-15: Clustering results section. ... 43
Figure 4-16: Parts and machines chromosomes structure. 43
Figure 4-17: An example for a three cluster centers chromosome 43
Figure 4-18: Exhaustive search model results section. 52
Figure 4-19: Results of exhaustive enumeration and genetic algorithm models match. 53
Figure 4-20: Final results of the perfect part-machine matrices obtained by genetic algorithms model. ... 53

Figure 5-1: Graphical representation for efficacy and efficiency. 65

Figure 5-2: Performance Comparison to Other Techniques. 68
LIST OF TABLES

Table 2-1: Search papers survey ...14
Table 3-1: Machines Specifications ...29
Table 3-2: Required Parts Specifications ...30
Table 4-1: Exhaustive search model part section ..49
Table 4-2: Exhaustive search model machine section ..50
Table 4-3: Exhaustive search model comparison section ..51
Table 5-1: Results obtained using exhaustive enumeration model ..56
Table 5-2: Un-clustered part-machine matrix obtained using exhaustive search56
Table 5-3: Results obtained using GA model ..58
Table 5-4: Un-clustered part-machine matrix obtained using GA model ..58
Table 5-5: Ideal three clusters matrix ...60
Table 5-6: Ideal four clusters matrix ...60
Table 5-7: Ideal five clusters matrix ...61
Table 5-8: Four clusters obtained by GA model ...62
Table 5-9: Five clusters obtained by GA model ..62
Table 5-10: Six clusters obtained by GA model ...63
Table 5-11: Seven clusters obtained by GA model ...63
Table 5-12: Eight clusters obtained by GA model ..64
Table 5-13: Grouping efficiency results ..64
Table 5-14: Efficacy results ...65
Table 5-15: Rank Order Clustering Results ...66
Table 5-16: Direct Clustering Algorithm Results ...66
Table 5-17: Comparison results between GA model, ROC, and DCA ..67
Table 5-18: Performance Comparison to Other Techniques ...67
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>Artificial Neural Network.</td>
</tr>
<tr>
<td>CMS</td>
<td>Cellular Manufacturing System.</td>
</tr>
<tr>
<td>DCA</td>
<td>Direct Clustering Algorithm.</td>
</tr>
<tr>
<td>FST</td>
<td>Fuzzy Set Theory.</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithms.</td>
</tr>
<tr>
<td>GRAFICS</td>
<td>Grouping Using Assignment Method For Initial Cluster Seeds.</td>
</tr>
<tr>
<td>GT</td>
<td>Group Technology.</td>
</tr>
<tr>
<td>M/C</td>
<td>Machine.</td>
</tr>
<tr>
<td>MST</td>
<td>Minimum Spanning Tree.</td>
</tr>
<tr>
<td>ROC</td>
<td>Rank Order Clustering.</td>
</tr>
<tr>
<td>TSP</td>
<td>Travelling Sales Person.</td>
</tr>
<tr>
<td>ZODIAC</td>
<td>Zero One Data Ideal Seed Algorithm for Clustering.</td>
</tr>
</tbody>
</table>
ABSTRACT

In recent years, the process of cellular manufacturing and group technology has received much attention and popularity in many developed countries. By applying Group technology, many benefits of flow-line production can be attained in a batch production system. GT can improve material handling, and significantly reduce material flow time and distance, and setup times.

In this thesis, a two steps approach to solve the GT problem using Genetic Algorithms is presented. The first step is to assign parts to the best available machines according to their required specifications. The second step is to form manufacturing cells (groups). The proposed GA model has the flexibility of choosing the number of cells required, which is very useful in examining different manufacturing cell configurations; or in case that the workshop or factory prefers a certain number of cells. For example if the workshop or factory doesn't have the workspace required for more than four cells.

To verify and validate the obtained results, the results of the first step are compared to the results of an exhaustive enumeration model, and the results of the second step are compared to the well known rank order clustering and direct clustering techniques. The results in both steps were found satisfactory. Additionally, the proposed model is used to solve some problems from the literature, and the results were compared to other techniques. The model produced satisfactory results, and in some cases, the results obtained were superior to the results obtained by other techniques.