APPLICATION OF GIS TECHNIQUES IN OIL SPILL RISK ASSESSMENT FOR THE GULF OF SUEZ

By

AMIR MOHAMED IBRAHIM MAGBOOL

A thesis submitted to the Arab Academy for Science and Technology and Maritime Transport in Fulfillment of the requirements for the award of

MASTER DEGREE

In
Maritime Transport Technology
(Environmental Protection)

Supervisors

Prof. Dr. Refaat Mohamed Rashad
College of Maritime Transport and Technology, Arab Academy for Science & Technology and Maritime Transport, Alexandria

Dr. Magdi M. Farag
Department of Oceanography, Faculty of Science, University of Alexandria, Alexandria - Egypt.

2008
DECLARATION

I certify that all the material in this dissertation that is not my work has been identified, and that no material is included for which a degree has previously been conferred on me.

The contents of this dissertation reflect my own personal views, and are not necessary endorsed by the Arab Academy for Science and Technology and Maritime Transport.

(Signature) ..
(Date) ..

Supervised by:

Dr. Refaat Mohamed Rashad

Dr. Magdy M. Farag
Department of Oceanography, Faculty of Science, University of Alexandria, Alexandria - Egypt.

(Signature) ..
(Signature) ..
(Date) ..
(Date) ..
ACKNOWLEDGEMENTS

Praise be to GOD, most thankful for his guidance and helping.

The author is thankful to Dr. G.A. Mokhtar President of the Arab Academy for Science & Technology and Maritime Transport.

Thankful to Dr. Gamal A.M. Ghalwash Dean of the College of Maritime Transport and Technology for his continuous encouragement during the course of this study.

The author is grateful to Prof. Dr. Refaat Mohamed Rashad for his supervision and continuous help and support during the progress of this work. Gratitude is also due to Dr. Magdy M. Farag for his supervision and constructive comments and support during the course of this study.

The author is Thankful to Engineer Tamer Ismail, Egyptian Environmental Affairs Agency for his fruitful cooperation throughout the development of this work.

The author extends his gratitude to friend Abd El-Rahman Al-Arifi.

Thanks also are due to the staff of Postgraduate Maritime Studies Department for their cooperation.
ABSTRACT

Gulf of Suez (GOS) has unique, sensitive and vulnerable marine environment and ecosystems. It has many tourism attraction factors based mainly on the marine activities in the area. GOS is an important navigational route that forms the southern approach to the Suez Canal, which is an international congested waterway. GOS is rich in aquaculture, fishing grounds and natural resources. Many modern ports, oil terminals, oil exploration and oil production activities are developed in the area.

GOS is shallow confined water and always exposed to operational and accidental oil spill risks despite the continuous efforts taken by the involved organizations. High accidental oil spill rates, high dissolved and dispersed oil concentrations, and high oil concentrations in the sediments are recorded in the area. Major oil spills could expose the area to significant environmental and socio-economic consequences due to its vulnerable nature. GOS needs management system to control, mitigate and reduce risk of oil spills.

This study presents the application of GIS in the organization of information that will determine the degree of vulnerability in standard formats. Information on relevant factors aimed to assess the level and status of oil pollution, in addition to recording natural features, sensitivity, economic importance, human use and activities of these coasts. The collected data are utilized GIS technologies to establish a categorization and ranking system to aid contingency planning.

The ESRI’s ArcGIS 9.0 platform is chosen as it guarantees an efficient means of managing geospatial data such as enabling easy alterations and updates. The Environmental Sensitivity Index (ESI) technique developed by the National Oceanic and Atmospheric Agency (NOAA) is used to organize the information in standard formats for shoreline sensitivity, biological resources,
exposure to wave and tidal energy and human-use resources. In this study the technique used to set up an updated and accurate oil spill sensitivity map is described. Based on all these information, appropriate methods to respond to oil spills in the different areas of GOS have also been assessed. Admiralty Chart of GOS number (159) with scale 1:750,000 was used to build a Digital map as base map for the thematic layers and listings of each processed data. Spatial and non-spatial data were analyzed through various functions of GIS techniques, such as geo-processing, data analysis and overlaying, to yield the risk Assessment system as thematic layers.

The chart is scanned and encoded into the GIS to establish new themes for the different types of the necessary features of GOS such as TSS, Ports, OOI, OT, Coasts and sensitive areas. For the purpose of simplifying the identification of the elements, they are specified by their co-ordinates.

Every element on the chart is provided with information table.

The risk mapping by GIS will provide the user with a number of data for each element, which are the following:

- Location of the necessary features of GOS (in Latitude and Longitude or any other system like (UTM),
- Estimated Risk Probability of Sp < 100 t with its category,
- Estimated Risk Probability of Sp > 100 t with its category,
- Depositary level of Floating Litter and Oil if it is a coastal element
- Integrated Vulnerability Ranking of the element
- Length of TSS, Ports Approach, Oil Terminal Approach in addition to the Length of Pipelines in Nautical Miles
- Number of Ports, Oil Terminals and Off-shore Installation Facilities

LIST OF CONTENTS

Declaration	ii
Acknowledgements	iii
Abstract	iv
List of contents	vi
List of tables	x
List of figures	xii
List of symbols & abbreviations	xiv

Chapter One: Introduction

1.1 General | 2 |
1.2 Background of research | 4 |
1.3 Literature Review | 5 |
1.4 The Need for Standardization | 13|
1.5 Objectives of the Study | 14|
1.6 Research Methodology | 14|
1.7 Thesis Layout | 14|

Chapter Two: State of Marine Environment in the Gulf of Suez

2.1 Physical and climatologic characteristics | 16|
2.1.1 Topography and bathymetry | 16|
2.1.2 Rainfall | 16|
2.1.3 Wind | 16|
2.1.4 Land and Sea breezes | 18|
2.1.5 Air Temperature | 19|
2.1.6 Relative Humidity | 20|
2.1.7 Cloud Cover | 20|
2.2 sea water characteristics | 20|
2.2.1 Sea temperature distribution | 20|
2.2.2 Salinity | 20|
2.2.3 Salt | 21|
2.2.4 Dissolved oxygen | 22|
2.2.5 Ammonia ... 22
2.2.6 Nitrate ... 23
2.2.7 Current circulation in the Gulf of Suez 24
 2.2.7.1 Wind driven current ... 24
 2.2.7.2 Tidal current ... 24
 2.2.7.3 Thermohaline circulation 25
 2.2.7.4 Sea level changes ... 25
2.3 Biological Characteristics of the Gulf of Suez 27
 2.3.1 Fish ... 27
 2.3.2 Sea Bird ... 28
 2.3.3 Turtles ... 30
 2.3.4 Marine Mammals .. 30
 2.3.5 Mangroves: ... 30
 2.3.6 Coral Reefs ... 31
 2.3.7 Sea Grass Beds .. 33
 2.3.8 Salt Marshes .. 34
2.4 Estimation of Global inputs of oil in the marine environment 34
2.5 Sources of pollution ... 36
2.6 Sources of pollution in GOS 36
 2.6.1 Marine Sources .. 36
 2.6.1.1 Ship traffic and density .. 37
 2.6.1.2 Suez Canal ships traffic 37
 2.6.1.3 Ports ships traffic ... 38
 2.6.2 Accidents ... 41
 2.6.3 Petroleum activities in the GOS 42
 2.6.4 Land based sources in the Gulf of Suez 45
 2.6.4.1 Industrial wastes ... 45
 2.6.4.2 Municipal or coastal wastes 47
 2.6.4.3 Urban runoff .. 48
 2.6.4.4 Mining ... 48
 2.6.4.5 Atmospheric fallout 49
Chapter Three: Materials and methods

3.1 GIS Technology ... 51
3.2 Data Availability and acquisition ... 52
 3.2.1 Availability of Data ... 52
 3.2.1.1 Base map .. 52
 3.2.1.2 Attribute data ... 53
 3.2.1.3 Sources of Oil Spill Data and Models of OSRA 65
3.3 Geodatabase Creation and Documentation 66
3.4 Data Entry .. 66
 3.4.1 The Basic Components of Sensitivity Mapping 66
 3.4.1.1 Shoreline Classification ... 66
 3.4.1.2 Biological Resources ... 67
 3.4.1.3 Human-Use Resources .. 68
3.4.2 Oil Spill Risk Assessment for GOS 70
 3.4.2.1 Estimated Probability of Oil Spills in Gulf of Suez 70
 3.4.2.2 Estimated Severity of Oil Spills in Gulf of Suez 72
 3.4.2.3 Evaluating Oil Spill Risks in Gulf of Suez 73
 3.4.2.4 Criteria of Integrated Vulnerability Ranking 74
 3.4.2.5 An Approach to Establish Depository Maps 75
 3.4.2.6 Evaluating the state of oil pollution in the GOS water and sediments ... 80
3.5 Data Management ... 82
 3.5.1 Data Presentation .. 83

Chapter Four: Build up (OSRA) using GIS technologies

4.1 Geodatabase Implementation .. 87
 4.1.1 Data Availability ... 87
 4.1.2 Data Conversion .. 87
4.2 Data Digitizing ... 88
4.3 Creation of GIS Project ... 91
4.4 The Master Data List .. 93
4.5 The Implementation of Oil Spill Risk Assessment.................. 94
 4.5.1 Environmental Sensitivity Mapping for GOS 97
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Monthly and annual changes in mean sea level at Suez</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Fishing Resources Data in the Red Sea in 2002</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Number of laden tankers and in ballast passed Suez Canal during the years 2000 and 2001</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Recorded Causalities number per Accident Type in GOS (1996 – 2002)</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Oil Fields and Oil Rigs in GOS</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Oil Terminals in GOS</td>
<td>43</td>
</tr>
<tr>
<td>2.7</td>
<td>The industrial wastes in the Gulf of Suez</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Industrial Waste Discharged into the Gulf of Suez from Certain Sources in the Suez Governorate during 2005</td>
<td>47</td>
</tr>
<tr>
<td>2.9</td>
<td>Sources of pollution caused by mining in the northern part of the Red Sea</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Admiralty charts for GOS</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Coastal Survey Stations on the Eastern Side of GOS</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>General Description and activities in Eastern Side of GOS</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Characteristics of the Eastern Side coastline of GOS</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Coastal Survey Stations on the Western Side of GOS</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>General Description and activities in Western Side of GOS</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>Characteristics of the Western Side coastline of GOS</td>
<td>60</td>
</tr>
<tr>
<td>3.8</td>
<td>Site number, location and general Description of the GOS Water Sites</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Characteristics of the sea bottom of GOS</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Comparative Criteria of Classifying the Elements of GOS According to the Estimated Probability of Oil Spills</td>
<td>71</td>
</tr>
<tr>
<td>3.11</td>
<td>Oil Spill Risk Probability Distribution in GOS</td>
<td>71</td>
</tr>
<tr>
<td>3.12</td>
<td>Estimated Risk Probability of Oil Spills in GOS by Source</td>
<td>72</td>
</tr>
<tr>
<td>3.13</td>
<td>Integrated Vulnerability Ranking Criteria</td>
<td>75</td>
</tr>
<tr>
<td>3.14</td>
<td>Comparative Criteria of Classifying Elements of GOS According to the Depositary Level of Floating Litter</td>
<td>76</td>
</tr>
<tr>
<td>3.15</td>
<td>Comparative Criteria of Classifying Elements of GOS According to the Depositary Level of Oil</td>
<td>77</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.16</td>
<td>Features and Observations of the Eastern Coast of GOS</td>
<td>78</td>
</tr>
<tr>
<td>3.17</td>
<td>Features and Observations of the Western Coast of GOS</td>
<td>79</td>
</tr>
<tr>
<td>3.18</td>
<td>Total organic carbon % and grain size ϕ</td>
<td>81</td>
</tr>
<tr>
<td>3.19</td>
<td>Petroleum hydrocarbons concentrations (μgg$^{-1}$ dry weight in chrysene equivalents) in Gulf of Suez sediments during the period from May 1999 to May 2001</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>The master data list</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Gulf of Suez</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>ESI Atlas Page – San Diego, Southern California, United States.</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>ESI Republic of Korea by Korea Coast Guard</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>ESI Tokyo Bay Japan by Japan Coast Guard</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Mean Prevailing Wind Roses in GOS in February</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Mean Prevailing Wind Roses in GOS in August</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>The monthly average, maximum and minimum air temperature (°C) at Suez.</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Ammonia concentrations in the Red Sea Region</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Nitrate concentrations in the Red Sea Region</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Average annual releases (1990–99) of petroleum into the sea by source.</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>The ballast water cycle</td>
<td>37</td>
</tr>
<tr>
<td>2.8</td>
<td>Percentage of the Types of Vessels Calling on GOS Harbors (2005)</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>Annual change in the imported oil to port of Suez (1992–2001).</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>Annual change in the exported oil from port of Suez (1992–2001).</td>
<td>40</td>
</tr>
<tr>
<td>2.11</td>
<td>Pollution Accidents Reported during 2005</td>
<td>44</td>
</tr>
<tr>
<td>2.12</td>
<td>Content of Hydrocarbons (microgram / liter)</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Coastal Field Survey Stations along GOS</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Water Field Survey Stations along GOS</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Risk Analysis and Assessment Matrix.</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>The GOS scanned map</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow chart diagram shows the digitizing process.</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Flow Chart for Creation of Arc GIS Project</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>GIS Base Map for GOS</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Location of the selected stations along GOS</td>
<td>96</td>
</tr>
<tr>
<td>4.6</td>
<td>Sensitive areas of GOS</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Areas of High Economic Importance and Human activities in GOS</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>The Integrated Vulnerability Ranking for GOS</td>
<td>100</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>Oil Depository Chart, the levels of oil depository for the coasts of GOS</td>
<td>102</td>
</tr>
<tr>
<td>4.10</td>
<td>Weight Accumulated Floating Litter in GOS</td>
<td>103</td>
</tr>
<tr>
<td>4.11</td>
<td>Oil spill risk probabilities in GOS for spills < 100 tonnes</td>
<td>105</td>
</tr>
<tr>
<td>4.12</td>
<td>Oil spill risk probabilities in GOS for spills > 100 tonnes</td>
<td>106</td>
</tr>
<tr>
<td>4.13</td>
<td>Petroleum Hydrocarbon concentration in GOS</td>
<td>107</td>
</tr>
<tr>
<td>4.14</td>
<td>The total Organic Carbon in GOS</td>
<td>108</td>
</tr>
<tr>
<td>4.15</td>
<td>The total Grain Size in GOS</td>
<td>109</td>
</tr>
</tbody>
</table>
List of Symbols & Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>Accident</td>
<td></td>
</tr>
<tr>
<td>ALARP</td>
<td>As Low As Reasonably Practicable</td>
<td></td>
</tr>
<tr>
<td>DWT</td>
<td>Dead Weight Tonnage</td>
<td></td>
</tr>
<tr>
<td>EEAA</td>
<td>Egyptian Environmental Affairs Agency</td>
<td></td>
</tr>
<tr>
<td>EMDB</td>
<td>Egyptian Maritime Data Bank</td>
<td></td>
</tr>
<tr>
<td>ENOSCP</td>
<td>Egyptian National Oil Spill Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>ERM</td>
<td>Environmental Risk Management</td>
<td></td>
</tr>
<tr>
<td>ESI</td>
<td>Environmental Sensitivity Index</td>
<td></td>
</tr>
<tr>
<td>ESRI</td>
<td>Environmental Systems Research Institute</td>
<td></td>
</tr>
<tr>
<td>GAFRD</td>
<td>General Authority for Fish Resources Development</td>
<td></td>
</tr>
<tr>
<td>GESAMP</td>
<td>Group of Experts of Scientific Aspects of Marine Pollution</td>
<td></td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
<td></td>
</tr>
<tr>
<td>GOS</td>
<td>Gulf of Suez</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
<td></td>
</tr>
<tr>
<td>ICS</td>
<td>Incident Command System</td>
<td></td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
<td></td>
</tr>
<tr>
<td>IPIECA</td>
<td>International Petroleum Industry Environmental Conservation Association</td>
<td></td>
</tr>
<tr>
<td>ITOPF</td>
<td>International Tanker Owners Pollution Federation</td>
<td></td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature and Natural Resource</td>
<td></td>
</tr>
<tr>
<td>IVR</td>
<td>Integrated Vulnerability Ranking</td>
<td></td>
</tr>
<tr>
<td>Kn</td>
<td>Knot</td>
<td></td>
</tr>
<tr>
<td>Lat.</td>
<td>Latitude</td>
<td></td>
</tr>
<tr>
<td>Long.</td>
<td>longitude</td>
<td></td>
</tr>
<tr>
<td>MARPOL</td>
<td>International Convention for the Prevention of Pollution from Ships</td>
<td></td>
</tr>
<tr>
<td>MHRAs</td>
<td>Marine High Risk Areas</td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>Ministry of Maritime Transport</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
<td></td>
</tr>
<tr>
<td>n.m.</td>
<td>Nautical Mile</td>
<td></td>
</tr>
<tr>
<td>NOAA</td>
<td>The National Oceanic and Atmospheric Agency</td>
<td></td>
</tr>
<tr>
<td>NOSCP</td>
<td>National Oil Spill contingency Plan</td>
<td></td>
</tr>
<tr>
<td>NOWPAP</td>
<td>Northwest Pacific Action Plan</td>
<td></td>
</tr>
<tr>
<td>OOI</td>
<td>Off-Shore Oil Installation.</td>
<td></td>
</tr>
<tr>
<td>OSCP</td>
<td>Oil Spill Contingency Plan</td>
<td></td>
</tr>
<tr>
<td>OSRA</td>
<td>Oil Spill Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>OSRM</td>
<td>Oil Spill Risk Management</td>
<td></td>
</tr>
<tr>
<td>OT</td>
<td>Oil Terminal</td>
<td></td>
</tr>
<tr>
<td>PLA</td>
<td>Ports and Lighthouse Authority</td>
<td></td>
</tr>
<tr>
<td>RSPA</td>
<td>Red Sea Ports Authority</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>Suez Canal</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Suez Canal Authority</td>
<td></td>
</tr>
<tr>
<td>SUMED</td>
<td>Suez Mediterranean “Arab Petroleum Pipe Lines Co.”</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>Traffic Separation Scheme</td>
<td></td>
</tr>
<tr>
<td>ULCC</td>
<td>Ultra Large Crude Carrier</td>
<td></td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
<td></td>
</tr>
<tr>
<td>VLCC</td>
<td>Very Large Crude Carrier</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Year</td>
<td></td>
</tr>
</tbody>
</table>