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Abstract 

The wide range for applications for microelectronic devices is basically 

due to the scaling down of dimensions of such devices. Unfortunately, the 

scaling down and miniaturization of these devices is not infinite. There 

are some challenges and limitations for scaling down of these devices into 

the nanometer regime. 

Accordingly, researchers are looking now to build new microelectronic 

devices with very small dimensions (nanotechnology). The behavior of 

such devices will be interpreted based on quantum mechanics principles 

due to small dimensions. The single-electron transistor (SET) is one of 

these devices which belongs to the quantum microelectronics family. 

The thesis is organized as follows: 

Chapter 1: The motivation behind searching for new electronic devices to 

be used in the nanometer regime, revision of the challenges facing 

conventional CMOS devices and reVISIon of the promIsIng 

nanotechnology devices. 

Chapter 2: The promising applications for SET devices: hybrid, room­

temperature, logic and novel circuits. 

Chapter 3: The physics and operation of the single-electron transistor 

(SET) including different theories used to describe the transport of 

electrons within the device and the Coulomb blockade phenomenon. 
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Chapter 4: The models used to simulate the SET including master 

equation method, Monte-Carlo method, SPICE models and computer 

programs used for each method. 

Chapter 5: Our contribution of building a new fast and accurate model for 

SET devices using the reduced master equation method, also we will 

benchmark our results with that of "Quantum-Transport Group" at Delft 

university . 

Chapter 6: Conclusions and proposed future work. 
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