Decision Support Model for a Seaport

by

Mohamed Abdel Salam Ragheb Mohamed

Bachelor of Commerce University of Alexandria 1989

Master of Science in Operations Research Arab Academy for Science and Technology 1999

A dissertation Submitted to Florida Institute of Technology in partial fulfillment of the requirements for the degree of

> Doctor of Philosophy in Operations Research

Melbourne, Florida December, 2005 We the undersigned committee hereby approve the attached thesis

Decision Support Model for a Seaport

by

Mohamed Abdel Salam Ragheb Mohamed

Kamel Rekab, Ph.D. Professor Computer Science Committee Chair -----

Muzaffar Shaikh, Ph.D. Professor, Department Head Engineering System

Mehdi Shahsavari, Ph.D. Associate Professor Electrical and Computer Engineering

Denise Jackson, Ph.D. Associate Professor Mathematical Science

V. Lakshmikanthan, Ph.D. Professor, Department Head Mathematical Science

Abstract

TITLE: Decision Support Model for a Seaport AUTHOR: Mohamed Abdel Salam Ragheb Mohamed MAJOR ADVISOR: Professor Dr. Kamel Rekab, Ph.D.

The continuing growth of maritime transportation and the great competition in shipping industry have created a fertile field for applying computer simulation. In this research, a simulation model for a seaport is designed, analyzed and tested. This simulation model represents the model base in a port decision support system that can be used as a planning and process improvement tool. Through the designed model, the decision maker can conduct a collection of simulation experiments to compare between alternatives, and perform what-if-analysis.

The simulation model in this study is comprehensive; all the major components and factors that affect a seaport are considered. The simulation model is validated through a case study for port of Alexandria, Egypt; where, three different validation techniques are applied. These techniques are the comparison between the observed and the simulated outputs, the sensitivity of the simulation outputs to small changes in the input parameters of the simulation model, and regression metamodel. All of those techniques showed that the simulation model is valid and capable of representing the operations of a seaport and rendering reliable performance indicators.

The most important factors are determined through a screening strategy; sequential bifurcation. Forty four factors are considered, the sequential bifurcation method figured out that six variables are important and have significant main effects. Surprisingly, all of the six variables are related to the cargo handling operations. These factors are the quay foreman, bags quay worker, bags hold worker, hook man, paper rolls crane cycle time and the average time after cargo handling. The steepest descent method is used to determine the optimal level of these factors.

Integrating Analytic Hierarchy Process (AHP) with simulation is not common; few researches emphasized the advantages of this integration. In this research, an AHP model is designed to compare between (n) seaports and choose the best one. The criteria of this model are the performance measures calculated by the simulation model. This model is applied to compare between two Egyptian ports; port of Alexandria and Portsaid port.

Table of Contents

List of Figures	ix
List of Tables	xii
Acknowledgement	xvii
Chapter 1	2
1.1 Preface	2
1.2 Problem Definition	3
1.3 Study Objective	5
1.4 Solution Methodology	6
1.5 Study Outline	9
Chapter 2	13
2.1 Introduction	13
2.2 Seaport Operations Simulation Models	13
2.3 Port Planning Simulation Models	23
2.4 Port Design and Port Expansion Simulation Models	26
2.5 Container Terminal Simulation Models	27
2.6 Mathematical Models	34
2.7 Analysis of Simulation Models	40
2.7.1 Inputs Outputs Analysis	40
2.7.2 Verification and Validation	51

2.7.3 Sensitivity Analysis and Optimization	57
2.7.4 Design of Experiments and Model Evaluation	62
Chapter 3	68
3.1 Introduction	68
3.2 Seaport Operations	68
3.3 Simulation Model	71
3.3.1 Port Data	76
3.3.2 Statistical Module	78
3.3.3 Generator Module	79
3.3.4 Ship Operations Module	84
3.3.4.1 Berth Assignment	85
3.3.4.2 Pilots and Tugboats Assignment	89
3.3.5 Cargo Handling Operations	94
3.3.5.1 Cranes Assignment	96
3.3.5.2 Labor Assignment	98
3.3.6 Warehousing Operations Module	99
3.3.7 Inland Transportation Module	102
3.3.8 Outputs Module	102
3.4 AHP Model for Seaport Selection.	104
Chapter 4	115
4.1 Introduction	115
4.2 Static Data and System Specifications	118

4.2.1 Geographic Characteristics	118
4.2.2 Human Resources	119
4.2.2.1 Pilots and Lashing Labors	120
4.2.2.2 Cargo Handling Gangs	120
4.2.2.3 Warehousing Human Resources	121
4.2.3 Equipment	121
4.2.3.1 Ship Operations Equipment	122
4.2.3.2 Cargo Handling Equipment	123
4.2.3.3 Transportation Equipment	124
4.2.3.4 Warehousing Equipment	124
4.2.4 Port Infrastructure	124
4.3 Dynamic Data	124
4.3.1 Arrival Pattern	125
4.3.2 Generating A Consistent Ship	131
4.3.2.1 Generating Ship's Dimensions	131
4.3.2.2 Generating Cargo Characteristics	138
4.3.3 Pilotage, Towage and Ship Lashing	142
4.3.4 Crane Cycle Time	145
4.3.5 Inland Transportation Dynamic Data	149
4.3.6 Warehousing of Cargo Dynamic data	151
4.3.7 Ship Delays	154
4.4 Priority System	156

4.5 Model Validation	158
4.5.1 Sensitivity of Model Outputs to Small Changes in Model	
Inputs	160
4.5.2 Regression Metamodel	164
Chapter 5	174
5.1 Introduction	174
5.2 The Number of Replications	175
5.3 The Length of the Warmup Period	176
5.4 Screening the Simulation Model	181
5.5 Sensitivity Analysis	202
Chapter 6	214
6.1 Introduction	214
6.2 Optimization of the Simulation Model	214
6.3 Analytic Hierarchy Process Model	236
Chapter 7	264
7.1 Conclusion	264
7.2 Suggestions for Future Research	270
References	273
Appendix A	296
Appendix B	324
Appendix C	347

List of Figures

3.1 The four main categories of port operations	72
3.2 General structure of port simulation model	73
3.3 Procedure for ships characteristic generation	81
3.4 Berth assignment	88
3.5 Pilot assignment	91
3.6 Tugboats assignment	93
3.7 Pilotage and towage operations	95
3.8 Cranes assignment	97
3.9 Labor assignment	100
3.10 Shortage of labor completion rules	101
3.11 Hierarchy for selecting the best seaport	109
4.1 The residuals versus the predicted values	169
4.2 Residuals histogram	169
4.3 Normal probability plot	170
4.4 Autocorrelation function	171
5.1 Warmup period for outer waiting time	179
5.2 Warmup period for inner waiting time	179
5.3 Warmup period for cargo handled per month	180
5.4 Warmup period for cargo dwell time	180
5.5 Sequential bifurcation steps no interaction effect	192

5.6 Sequential bifurcation steps with interaction effect	198
5.7 Sensitivity analysis of the turnaround time to quay foreman	207
5.8 Sensitivity analysis of the turnaround time to hook man	208
5.9 Sensitivity analysis of the turnaround time to time after c. handling	209
5.10 Sensitivity analysis of the turnaround time to bags quay workers	210
5.11 Sensitivity analysis of the turnaround time to bags hold worker	211
5.12 Sensitivity analysis of the turnaround time to crane cycle time	212
6.1 The residuals versus the predicted values	221
6.2 Residuals histogram	223
6.3 Normal probability plot	224
6.4 Autocorrelation function	235
6.5 AHP for comparing between port of Alex. And Portsaid port	237
6.6 The tree view of AHP	240
6.7 The relative importance of the criteria for port of Alex. and Portsaid	
port	243
6.8 The overall and factors priorities for port of Alex. and Portsaid port	244
6.9 Sensitivity analysis of the ports priorities to the priorities of different	
factors	246
6.10 The alt. priorities with respect to two criteria at a time	247
6.11 The relative importance of the criteria for port of Alex. and Portsaid	
port	256
6.12 The overall and factors priorities for port of Alex. and Portsaid port	257

6.13 Sensitivity analysis of the ports priorities to the different factors	260
6.14: The alternative priorities with respect to two criteria at a time	261

List of Tables

3.1 Weather condition and productivity coefficient	84
3.2 Pilotage and towage rules	89
4.1 The available number of pilots in port of Alexandria	121
4.2 The available number of pilots in each shift	122
4.3 Available man powers for cargo handling in port of Alexandria	296
4.4 Standard gang groups required for different types of cargo	297
4.5 Available man powers in warehouses of g. cargo in port of Alex	298
4.6 Available number of tugs and launches in Alex. and Portsaid ports	123
4.7 The available number of each type of the cranes in port of Alex	299
4.8 The available number of each type of the cranes in Portsaid port	300
4.9 The characteristics of the different type of cranes	301
4.10 The available number transportation equipment in Port of Alex	305
4.11 The equipment of the storage facilities of port Alexandria	305
4.12 The berths characteristics in port of Alex	306
4.13 The berths characteristics in Portsaid port	308
4.14 The available warehouses characteristics in port of Alexandria	309
4.15 The distance between the berths and warehouses in port of Alex	311
4.16 The p-values of the run test for the different months	126
4.17 Skewness and critical values for interarrival time	127
4.18 Significance of the Wilcoxon signed rank test for skewness	128

4.19 Frequency of ship types in port of Alexandria	324
4.20 Frequency of ship types in Portsaid port	325
4.21 Relative frequency for the length and GRT in port of Alexandria	133
4.22 Relative frequency for the length and GRT in Portsaid port	133
4.23 The relative frequency for the ships purpose in Alex. and Portsaid	134
4.24 Pearson correlation coefficients among the different ship	
characteristics for port of Alexandria	326
4.25 Pearson correlation coefficients among the different ship	
characteristics for Portsaid port	327
4.26 Coefficient of determination R^2 for different simple regression	
equations	136
4.27 Stepwise regression outputs	137
4.28 Regression equations for generating ship characteristics	139
4.29 General cargo type's relative frequency for port of Alexandria	140
4.30 General cargo types' relative frequency for Portsaid port	141
4.31 The relative frequency for the number of holds in use	141
4.32 Percentage of cargo that will be located in each holds in use	142
4.33 Distance from a central point in the inner anchorage to the berth in	
port of Alexandria	312
4.34 Crane cycle time for general cargo (Bales)	313
4.35 Crane cycle time for general cargo (Cartons)	314

4.37 Crane cycle time for general cargo (Paper Rolls)	316
4.38 Crane cycle time for general cargo (Iron Bars)	317
4.39 Crane cycle time for general cargo (Iron Rolls)	318
4.40 Crane cycle time for general cargo (Iron Pipes)	319
4.41 Crane cycle time for general cargo (Bags)	320
4.42 Crane cycle time for general cargo (Boxes)	321
4.43 The errors in crane cycle time corresponding to the sample size	147
4.44 Fitted probability distribution for crane cycle times	149
4.45 The tackle load for the different general cargo types	157
4.46 Empirical distribution for the route of cargo	150
4.47 Empirical distribution of initial daily inventory in Alex. Storage area	152
I I I I I I I I I I I I I I I I I I I	
4.48 Empirical dist. of initial daily inventory in Mahmoudia storage	
	153
4.48 Empirical dist. of initial daily inventory in Mahmoudia storage	153 154
4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area	
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area. 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 	154
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area. 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 4.50 Daily delivered quantity of g. cargo from Mahmoudia storage area 	154 155
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area. 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 4.50 Daily delivered quantity of g. cargo from Mahmoudia storage area 4.51 Holding time for general cargo 	154 155 156
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area. 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 4.50 Daily delivered quantity of g. cargo from Mahmoudia storage area 4.51 Holding time for general cargo 4.52 Delays for unclaimed cargo 	154 155 156 157
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area. 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 4.50 Daily delivered quantity of g. cargo from Mahmoudia storage area 4.51 Holding time for general cargo 4.52 Delays for unclaimed cargo 4.53 Average time of storage processes 	154 155 156 157 158
 4.48 Empirical dist. of initial daily inventory in Mahmoudia storage area 4.49 Daily delivered quantity of g. cargo from Alexandria storage area 4.50 Daily delivered quantity of g. cargo from Mahmoudia storage area 4.51 Holding time for general cargo 4.52 Delays for unclaimed cargo 4.53 Average time of storage processes 4.54 The average delays for each reason for different cargo types 	 154 155 156 157 158 322

4.58 Comparison between simulated and observed outputs	163
4.59 95% Confidence intervals for the performance indicators	164
4.60 Regression metamodel's input data	338
4.61 The regression coefficients of the regression metamodel	167
4.62 The regression coefficients of the best regression metamodel	138
5.1 The number of replications required to estimate the performance	
indicators	176
5.2 The warmup periods	178
5.3 The base value, high level and low level of controllable variables	186
5.4 Observations for the first two extreme scenarios	188
5.5 Sequential bifurcation average response and aggregate main effects	
with no interaction	193
5.6 The most important factors that affect the turnaround time without	
interaction	195
5.7 Sequential bifurcation average response and aggregate main effects	
with two-factor interaction	199
5.8 Important factors that affect the turnaround time with two-factor	
interaction	201
5.9 Sensitivity analysis of the turnaround time to the most important	
factors	205
6.1 The base value, the high level and the low level of the factors in	
natural units	216

6.2 Design matrix for the 2 ⁶ factorial design	217
6.3 Regression coefficients of the coded variables	222
6.4 Effect estimates of the significant combinations	226
6.5 Analysis of variance	228
6.6 The increment for the coded and natural variables	232
6.7 The steepest descent method results	233
6.8 Performance indicators for Port of Alexandria and Portsaid port	238
6.9 AHP calculations using direct data	241
6.10 AHP calculations using pairwise comparisons	254

Acknowledgement

First of all, I would like to thank the Arab Academy for Science and Technology (AAST) for supporting me during this study. Special appreciation to Dr. Nabil Fahmy, the Dean of college of management and technology; Alexandria branch, and Dr. Assad Elnidani, the dean of college of management and technology, Cairo branch.

The author wishes to express great appreciation to the supervisory committee for their guidance and assistance during this study. Dr. Kamel Rekab, the major advisor and the chairman of the advisory committee, have given the author countless support. The author takes this opportunity to thank him very much.

The advisory committee members, Dr. Muzaffar Shaikh, Dr, Mehdi Shahsavari, and Dr. Denise Jackson are gratefully thanked for their evaluation for this work. The author takes the opportunity to thank Dr. Muzaffar Shaikh for his assistance; he was a second advisor to the author.

I really appreciate the Egyptian Maritime Data Bank (EMDB), especially my friend Mohamed Saber who provided the author with the required data, which was really helpful to study the validation of the simulation model.

The author appreciates Dr. Jack Kleijnen for his valuable research that he sent to the author. These papers were very helpful especially for screening the simulation model.

Finally, the author takes the opportunity to appreciate his parents, brothers and sister, wife, and children.

Dedication

To my Parents, brothers and sister, my wife and my kids Ahmed and Youssef.