ARCHITECTURAL AND SOLAR POTENTIAL
OF CURVED AND FLAT ROOFS
IN HOT ARID REGIONS
(With Reference To Egypt)

By

Ahmed A. B. ELSERAGY
BSc., MSc. in Architecture

Thesis Submitted to the University of Nottingham for the Degree of
DOCTOR OF PHILOSOPHY

December 2003
ACKNOWLEDGMENTS

Firstly, I would like to gratefully acknowledge the effort of my supervisor Dr. M. Gadi, who has been an endless source of motivation and advice, and from whom I have learnt a great deal of experience throughout the progress of this research. During the crucial period of writing up he whole-heartedly supported me. I wish to thank him not only for reading and correcting errors in earlier drafts, but also for the valuable suggestions on my entire work, and especially for all the efforts he exerted during the submission period of this thesis.

I wish also to thank and express my deep gratitude to The Arab Academy for Science and Technology (AAST), www.aast.edu, for supporting my living expenses during the period of my PhD study in the UK, and also to the School of the Built Environment and the International Office at the University of Nottingham for awarding me a partial tuition fees scholarship.

I am deeply indebted to Amira, my wife and colleague, for her sincere moral support. She constructively supported me throughout my studies and in the editing and sewing of this thesis. Doubtlessly, I could not have survived the period of my study without her patient support. I cannot thank her adequately enough for all her love, help and support; her role throughout this period cannot be expressed in words.

I would like to address my great appreciations to my father for his continuous encouragement, help, advice and financial-support. All thanks and respects go to my mother for her moral support and love; her phone calls from Egypt have relieved hard-times and have produced motivation and enthusiasm. They both have shown great understanding, patience and support during the course of my PhD study, without which I could not have approached my aim. I hope that I would be able to repay them some of their favors and to fulfill my obligations towards them. Special thanks go to Lamya, my sister, and all my family who gave me every possible support and help.

I have to acknowledge that without the love of my daughter Farida, and her continuous unintentional encouragements for me to finish my PhD in time and have my “big exam” to “be doctor” and “to be good boy” as she says. I hope that my daughter and my wife would forgive that I was not able to fulfill all my obligations towards them during this period.

Thanks are due to Professor J. Chilton, Head of School of Architecture, University of Lincoln, for his continuous encouragement, unlimited support and assistance throughout my stay in the UK. He has always been of great help to my family and me, for which I whole-heartedly appreciate. Finally, I wish to express my sincere thanks and gratitude to Professor S. B. Riffat, Head of School of the Built Environment, University of Nottingham, for his invaluable help, encouragement and guidance.

Ahmed Elseragy…….
1. INTRODUCTION 0
1.1 RESEARCH PROBLEM 2
1.2 RESEARCH AIMS 3
1.3 EMPIRICAL RESEARCH METHODOLOGY 3
1.4 OUTLINE OF THE THESIS 4
1.5 CONCLUSION 6
Reference List 7

2. ENERGY RESOURCES AND INDOOR THERMAL COMFORT IN HOT ARID CLIMATES (WITH REFERENCE TO EGYPT) 9
2.1 ENERGY, NATURAL RESOURCES AND POPULATION GROWTH 12
2.1.1 World’s Population Growth and Energy Consumption Rates 13
2.1.2 African Continent Population Growth and Energy-Consumption Rates 14
2.1.3 Egypt Population Growth and Energy-Consumption Rates 15
2.2 ENERGY EFFICIENT BUILDINGS AND SUSTAINABILITY 17
2.2.1 Global Environmental Impact From Current Energy Use 18
2.2.2 Sustainability in Architecture and Buildings 19
2.2.3 Climate Conscious Design in Sustainable Buildings 21
2.2.4 BIOCLIMATIC Architecture 23
2.3 CLIMATIC DESIGN AND INDOOR THERMAL COMFORT 24
2.3.1 Hot-Arid Zones; Climatic Characteristics & Geographical Locations 27
2.3.1.1 African Continent Climatic Regions & The Selected Hot-Arid Zone 28
2.3.1.2 Egypt Climate & Geography 29
2.3.1.3 Egypt Geographic and Climatic Classifications 31
2.3.2 Indoor Thermal Comfort And Human Requirements 35
2.3.2.1 The Main Factors and Variables Affecting Indoor Thermal Comfort 36
2.3.2.2 The Thermal Body’s Balance 37
2.3.2.3 The Bio-Climatic Chart and The Comfort Zone 39
2.4 CONCLUSIONS 41
REFERENCE LIST 43

3. TRADITIONAL AND MODERN PASSIVE COOLING TECHNIQUES IN HOT ARID REGIONS 44
3.1 PRINCIPLES OF PASSIVE COOLING TECHNIQUES IN BUILDINGS 45
3.1.1 Cooling by Ventilation 46
3.1.2 Cooling by Dehumidification 46
3.1.3 Cooling by Evaporation 46
3.1.4 Cooling By Convection and Conduction Heat Loss 47
3.1.4.1 Cooling by Radiation 47
3.1.4.2 Mass-effect Cooling 48
3.2 TRADITIONAL PASSIVE COOLING TECHNIQUES AND MATERIALS 48
3.2.1 Preliminary Investigations and Historical Overview 49
3.2.1.1 Ancient Passive Cooling Techniques (Egyptian & Mesopotamian Civilisations) 50
3.2.1.2 Exemplary Techniques of Traditional Passive Cooling in Hot Regions 51
1. Domed and Vaulted Roofs (Roof Geometry); 51
2. Doubled Roofs with Air Gap and Roofs Top Vents 54
3. The Use of Massive Walls and Earth Direct Contact; 55
4. Courtyard (Inner Patio); 58
5. Openings; 60
6. Wind Catcher Towers (Malqaf); 61
7. Doubled Screen Window with Porous Jar of Water (Mashrabyya); 63

3.2.2 Traditional Passive Cooling Techniques in Contemporary Architecture 64
3.2.2.1 TUWAIQ Palace, Riyadh, Saudi Arabia, 1985 65
3.2.2.2 KASR ALHOKM; Justice Palace & Mosque, Riyadh, Saudi Arabia, 1992 67
3.2.2.3 National Commercial Bank, Jeddah, Saudi Arabia, 1982-84 69
3.3 CONCLUSIONS 72

Reference List 74

4. ENERGY CONSCIOUS ROOFS IN HOT-ARID CLIMATES 75
4.1 CLIMATE AND BUILDING DESIGN 76
4.1.1 Roof Design in Hot-arid Climates 77
4.1.2 Thermal Performance of Roofs Form and Geometry 77
4.1.3 Roofing Construction Materials 79
4.2 TRADITIONAL CURVED ROOFS CONSTRUCTIONS (Vaults and Domes) 80
4.2.1 Curved Roofs Geometrical Forms and Types 80
4.2.2 Curved Roofs Construction Technologies and Materials 82
4.2.2.1 Curved Roofs, Vaults, and Domes Construction Materials 82
4.2.2.2 Woodless Construction Techniques (Vaulted and Domed Mud Constructions) 83
4.2.2.3 Nubian Vaults and Domes 85
4.2.2.4 Afghan and Persian Domes 92
4.3 REINTRODUCING TRADITIONAL CURVED ROOFS 93
4.3.1 Persuasive Introduction and Successive Publicity 93
4.3.2 Training And Practical Skills Development Programs 95
4.3.3 Technical Future Update and Training for Architects and Building Designers 96
4.4 REVITALISATION OF TRADITIONAL CURVED ROOFS 96
4.4.1 Hassan Fathy And Other Egyptian Architects 97
4.4.1.1 Hassan Fathy Architectural Philosophies, Efforts, and Attempts 97
4.4.1.2 Hassan Fathy Development Housing Projects 98
4.4.1.3 Hassan Fathy Residential Designs 102
4.4.1.4 Ramses Wissa Wassef (1911 – 1974) 105
4.4.1.5 Abdel Wahid El-Wakil 107
4.4.2 Other Regional Architects Works 109
4.4.3 Socio-cultural and Technical Development Workshops 110
4.4.3.1 ADAUA Organisation and Two Successful Projects in Africa 110
4.4.3.2 The Agricultural Training Centre, 113
4.4.4 Research and Development Projects 114
4.5 CONCLUSIONS 116

Reference List 118

5. SOLAR RADIATION ON DIFFERENT SURFACE GEOMETRIES 120
5.1 Solar and Architectural Design 121
5.1.1 Solar Radiation and Earth Thermal Balance 122
5.1.2 Solar Geometry 123
5.1.2.1 Earth-Sun Geometrical Relationships 123
5.1.2.2 Sun Path and Position 125
5.2 ESTIMATION OF SOLAR RADIATION INTENSITY ON HORIZONTAL AND OBLIQUE SURFACES 127
5.2.1 Solar Radiation Intensity and Geographical Latitudes 128
5.2.2 Solar Radiation Intensity and Recipient Surface Geometry (Solar Geometry of Sloped Surfaces) 131
5.2.3 Ratio of Beam Radiation on Tilted Surface to that on Horizontal Surface 133
5.2.4 Solar Radiation on Sloping Surfaces and on Curved Forms 134
5.2.5 Previous Applications of Sloped Solar Irradiance On Curved Forms 135
5.2.5.1 Irradiation on an Inclined Planar Surface (Skylight Domes) 135
5.2.5.2 Geometric Forms and Insolation Compared with Horizontal Surfaces 137
5.3 DESCRIPTION OF THE SOLAR RADIATION SIMULATION MODEL SRSM 140
5.4 CALCULATION OF SOLAR RADIATION INTENSITY ON CURVED AND FLAT ROOFS EXTERNAL SURFACES 143
5.4.1 The Orientation of Curved Roof and Solar Radiation Intensity 143
5.4.1.1 The Curved Roof Curvature Faces North and South Directions (Extended CCS - Vaulted Roof) 146
5.4.1.2 The Curved Roof Curvature Faces East and West Directions 147
5.4.2 The Geometrical Resemblance of Curved Roofs (Planar Segments and Facets) 148
5.4.3 Calculating The Total Received Solar Radiation Intensity (W/m2) on a CCS 153
5.5 CONCLUSIONS 154

Reference List 157

6. SOLAR BEHAVIOUR OF FLAT AND SEMICIRCULAR VAULTED ROofs WITH DIFFERENT ORIENTATIONS 159
6.1 DATA INPUT AND CCS(std) GEOMETRY RESEMBLANCE 160
6.2 SOLAR PERFORMANCE OF SEMICIRCULAR CURVED ROOF (The CCS(std) Curvature Faces Principal Directions) (N-S) & (E-W) 162
6.2.1 CCS(std) Curvature Faces NORTH and SOUTH 163
6.2.1.1 CCS(std) Faces (N-S) During June 163
6.2.1.2 CCS(std) Faces (N-S) During December 165
6.2.2 CCS(std) Curvature Faces EAST and WEST 167
6.2.2.1 CCS(std) Faces (E-W) During June 167
6.2.2.2 CCS(std) Faces (E-W) During December 169
6.2.3 The Calculated Difference Between I(HTCS) on Flat Roof and I(HTCS) on CCS(std) Faces Principal Directions (N-S) & (E-W) 172
6.3 THE SOLAR PERFORMANCE OF SEMICIRCULAR CURVED ROOF (CCS(std) Curvature Faces Secondary Directions) (NW-SE) & (NE-SW) 173
6.3.1 CCS(std) Curvature Faces NORTHWEST and SOUTHEAST 174
6.3.1.1 CCS(std) Faces (NW-SE) During June 174
6.3.1.2 CCS(std) Faces (NW-SE) During December 177
6.3.2 CCS(std) Curvature Faces NORTHEAST and SOUTHWEST 180
6.3.2.1 CCS(std) Faces (NE-SW) During June 180
6.3.2.2 CCS(std) Faces (NE-SW) During December 181
6.3.3 The Calculated Difference Between I-HTCS) on Flat Roof and I-HTCS) on CCS(std) Faces Secondary-Directions (NW-SE) & (NE-SW) 182
6.4 FORM SEASONAL RATIO 183
6.5 THE HOUHRLY RATIO BETWEEN I-HTCS) on CCS(std) AND I-HTCS) ON FLAT ROOF 185
6.6 THE SOLAR PERFORMANCE OF A HALF CURVED ROOF (Half–CCS(std)) 187
6.7 CONCLUSIONS 189
June 191
Reference List 191

7. SOLAR BEHAVIOUR OF FLAT AND VAULTED ROOFS WITH DIFFERENT CURVATURES AND ORIENTATIONS 192
7.1 DATA INPUT AND CURVED ROOFS GEOMETRICAL RESEMBLANCE 193
7.2 THE SOLAR PERFORMANCE OF SEVEN CURVED ROOFS 197
7.2.1 CCS Curvatures Face NORTH and SOUTH During June 197
7.2.2 CCS Curvatures Face NORTH and SOUTH During December 200
7.2.3 CCS Curvatures Face EAST and WEST During June 203
7.2.4 CCS Curvatures Face EAST and WEST During December 207
7.3 THE SOLAR PERFORMANCE OF SEVEN CURVED ROOFS 210
7.3.1 CCS Curvatures Face NORTHWEST and SOUTHEAST During June 210
7.3.2 CCS Curvatures Face NORTHWEST and SOUTHEAST During December 213
7.3.3 CCS Curvatures Face NORTHEAST and SOUTHWEST During June 216
7.3.4 CCS Curvatures Face NORTHEAST and SOUTHWEST During December 217
7.4 FORM SEASONAL RATIOS 218
7.5 DATA INPUT AND CURVED ROOFS GEOMETRICAL RESEMBLANCE 222
7.6 COMPARISON BETWEEN THE RECEIVED I-HTCS) on different CCSR 223
7.7 CONCLUSIONS 225
Reference List 229

8. SOLAR BEHAVIOUR OF FLAT AND DOMED ROOFS WITH DIFFERENT CURVATURES 229
8.1 DATA INPUT AND DOMED FORMS GEOMETRICAL RESEMBLANCE 230
A=B 230
8.2 THE SOLAR PERFORMANCE OF DIFFERENT DOMED ROOF CURVATURES 233
8.2.1 The Solar Performance of Dome1 (std) (A=B) 233
8.2.2 The Solar Performance of Dome2 A= 0.5B 239
8.2.3 The Solar Performance of Dome3 A= 2B 246
8.2. The Solar Performance of The Three Dome Geometries and Flat Roof 252
8.3 DOMED ROOFS SHADE-ANALYSIS 253
8.3.1 The Ratios of Self-Shaded and Exposed Areas Above Domed Roofs 259
8.4 CONCLUSIONS 262
Reference List 265

9. RESEARCH OVERALL CONCLUSIONS, VALIDATION AND FURTHER DEVELOPMENTS 265
9.1 TRADITIONAL PASSIVE COOLING TECHNIQUES AND THE NEED FOR ENERGY EFFICIENT CONTEMPORARY ARCHITECTURE 266
9.1.1 Architectural Proposals of The Tested Curved Roofs Different Building Types 266
9.1.1.1 Different Architectural Masses and Compositions 267
9.1.1.2 Different Building Types (Inner-Spaces Functional Suitability) 271
9.2 SOLAR RADIATION INTENSITY AND THE RECEIVER SURFACE GEOMETRY 276
9.3 VALIDATION OF RESEARCH TOOLS 277
9.3.1 Self-Shaded Areas on Domed Roof Surfaces 278
9.3.2 ECOTECT Solar Radiation Intensity Modelling 279
9.3.2.1 Solar Radiation Intensity on Flat Roof 280
9.3.2.2 ECOTECT Solar Intensity Simulation on Semicircular Domed-roof 282
Date: 15th December 284
9.3.2.3 Comparison Between the Solar Performances Semicircular domed Using Two Different Computer simulation Tools 285
9.3.3 Curved-Roofs Indoor Thermal Analysis 288
9.4 VALIDATION OF THE RESEARCH WORK AND MAIN FINDINGS 290
9.5 NOVEL CONTRIBUTION AND AIMS FULFILLMENT 293
9.5.1 Solar Performance of Flat and Curved-roofs with Different Forms, Curvatures, and Orientations 294
9.5.2 Design Guidelines of Solar Performance of Flat and Curved Roofs Form and Orientation in Hot-arid Regions 296
9.5.2.1 Flat and Vaulted Roofs in Summer and Winter 296
9.5.2.2 Flat and Domed Roofs in Summer & Winter 298
9.6 RECOMMENDATIONS FOR FURTHER RESEARCH WORK 299
9.6.1 Computer Simulation and Modelling 299
9.6.2 Monitoring of Full-Scale Models 300
Reference List 304
ABSTRACT

This thesis investigates the effect of various vaulted and domed roof geometries on their solar behaviour under given summer and winter conditions. Roof is the building-envelope element that is most exposed to the sun as it receives a high amount of solar radiation, which is the main cause of summer overheating in hot-arid climates. In addition, to other climatic and physical factors, indoor thermal comfort in hot-arid climates is also influenced by the intensity of solar radiation received by roof surfaces. Therefore, roof form and geometry should be designed with careful consideration to insolation parameters. Domed, vaulted, and curved roofs have been used for a long time in hot-arid regions for historical, cultural, climatic, and structural reasons. The review of previous research work showed that different explanations have been given to the climatic effects of their forms and the environmental behaviour of their enclosed spaces.

The research explores the previous attempts that discussed the relevant principles of solar radiation and solar geometry on horizontal and tilted surfaces with different orientations. The previous work that applied these principles and theories to evaluate the solar behaviour of architectural elements with arbitrary forms was also investigated. In order to evaluate the solar performance of flat and curved roofs geometrical configurations, a parametric study testing the received solar radiation intensity (W/m²) on flat, vaulted, and domed roofs with different span-to-height ratios and orientations was carried out using a published solar computer model. The results of this model were followed by validation tests using other two commercially available computer tools to carry out a brief solar and thermal analysis of selected curved-roof geometries. The evaluated curved-roofs solar performance and main findings of the present research have been compared with recently published independent research.

It is believed that this research establishes a sound theoretical basis for the validity of various claims of the climatic advantages of different curved-roof forms in hot-arid regions. As part of this research outcome, solar and architectural design-guidelines for curved-roofs are introduced. The research concludes with a discussion of the architectural and solar potential of curved-roof forms, which is believed to be novel contribution to the knowledge and the understanding of curved-roofs solar behaviour and architectural applications in hot-arid climates.