ARAB ACADEMY FOR SCIENCE & TECHNOLOGY AND
MARITIME TRANSPORT
COLLEGE OF MARITIME AND TECHNOLOGY
ALEXANDRIA, EGYPT

ELECTRONIC CHART DISPLAY INFORMATION
SYSTEM FOR IMPROVING NAVIGATION SAFETY

By
Nafea Abdel Hamid

A Dissertation submitted to the Arab Academy For Science
and Technology And Maritime Transport
in partial fulfillment of the requirements of
Master Degree
In
MARITIME TRANSPORT TECHNOLOGY
(Navigation)

Supervisors

Prof. Dr. KHAMIES EL SH ENNAWY
College Of Engineering and Technology
Arab Academy For Science &
Technology and Maritime Transport

Dr. SALEH MESBAH EL KAFFAS
Institute of Graduate Studies and
Research
University of Alexandria

(2004)
قالوا: سبحانك لا علم لنا ما علمنا
إنك أنت العليم الحكيم (32)

صدق الله العظيم

سورة البقرة آية 32
Acknowledgement

The researcher wishes to express his deepest gratitude to Dr. Gamal Mokhtar President of Arab academy for Science and Technology & Maritime Transport for his continual moral support for maritime education and his dedication towards the promotion of the shipping industry in accordance with the latest technological developments taking place in the world.

The researcher wishes to express his deepest gratitude to his supervisors: Professor Dr Khamies El Shennawy for his significant guidance, encouragement and advice throughout this work and to Dr Saleh Elkafas for his invaluable advice and constructive suggestions. Also gratitude is due to the support and encouragement of Admiral Hassan Hamdy Head of Marine Simulator and all Simulator’s staff for their encouragement and support, and in particular to Dr. Hatem Al Kerdany, Engineer Ahmad Mustafa and Engineer Mahmoud Mashaly.

The researcher also extends sincere thanks to Dr. Mohamed Farghly, dean of MSC. My appreciation also goes to Dr. Refaat Rashad Head of the Graduate Maritime Studies for his guidance, encouragement and profound support.

Finally, the researcher would like to donate this thesis to his dear family, for their patience, support and emotional encouragement.
ABSTRACT

Navigation charts are one of the very important tools to assure safety of navigation. It has been developed from the conventional paper charts to the Electronic charts display and Information System (ECDIS). Geographical information System (GIS) is an analytical tool to achieve special function in the field of information handling and analysis. It has various applications for Maritime Safety when interfaced with ECDIS and Automatic and Identification System.

The present research examines in depth the ENC as a spatial tool with reference of national and international experiences applications. A review of Electronic Navigational charts (ENC) development and their types are studied. This review includes the technology for efficient mapping. It includes also a discussion on the role of ENC and ECDIS in an integrated navigational system.

A geographical database is designed using multi-layered data. Different data layers are included in the geographical database. This includes the base map, water depths points and contours, the coastline, and the quays. There are also data layers contains the locations of the navigational aids such as buoys and light houses. Data are collected from different sources in different formats. Data collected are entered to the system using Arc-view desktop GIS.

Spatial data analysis of the developed multi-layered GIS include registering the layers to the same coordinate system and geocoding the raster format map layers. Feature selection is used to produce view layers with different features according to the interest of the user. Query analysis is carried out to obtain information on specific features such as buoys, lighthouses and Quays which represent the important tools as navigational aids. A suitability analysis is also carried out to select the best routes for navigation. The necessary criteria are defined for route selection.

The research then evaluates and tests the system during actual applications and proposes feasible solutions for the problems associated with these applications. Relevant conclusion and recommendations for using the developed system are submitted in terms of its usability in navigation.
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration. ..</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement. ...</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract. ..</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures. ...</td>
<td>ix</td>
</tr>
<tr>
<td>List of Tables. ...</td>
<td>x</td>
</tr>
<tr>
<td>List of Charts. ..</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations. ...</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION. ... 1

1.1. Research Problem. ... 5

1.2. Research Objective. ... 5

1.3. Research Methodology. ... 6

1.4. Thesis Organization. ... 7

CHATER TWO: ECDIS AND ENC SYSTEM (SENS)......................... 8

2.1. Electronic Navigation Chart (ENC). .. 11

2.2. Data model of electronic navigation charts. 12

2.2.1. Raster Charts. ... 14

2.2.2. RCDS (Raster Chart Display System). 15

2.2.3. Vector Charts. ... 15

2.2.4. Graphical Comparison of Raster and vector System. 16

2.3. Review of ENC Experience in some countries. 16

2.3.1. Canada ENC experience. .. 16
2.3.2. The Portuguese Experience. .. 19
2.3.3. The Experience of Cuba. .. 21
2.4. Distribution of ENC. ... 21
2.4.1. Regional ENC centers. ... 22
2.4.2. ENC Updating. ... 23

CHAPTER THREE: ECDIS AND INTEGRATION WITH OTHER NAVIGATION SYSTEM. ... 32
3.1. Sensors for position course and speed. ... 33
3.1.1. Position fixing instruments. ... 33
3.1.2. Course and speed sensors. ... 41
3.1.3. Radar as a sensor. ... 42
3.2. Overlaying ECDIS and radar image. .. 44
3.2.1. Integration of functionalities, data and instruments. 45
3.2.2. Relative and true position. .. 46
3.2.3. ARPA overlay. ... 47
3.2.4. Requirements, problems and reservation. 49
3.3. Automatic track control .. 51
3.4. Route planning .. 51
3.5. Automatic Identifications System (AIS). 54
3.6. ECDIS display with both radar/ARPA and AIS. 58
3.7. VTS information and ECDIS. .. 60
3.8. Automatic collision avoidance based on ECDIS. 63

CHAPTER FOUR: GEOGRAPHICAL INFORMATION SYSTEMS (GIS). ... 65
4.1. GIS Definition and Components. .. 66
4.1.1. Advantages of GIS. .. 68
4.1.2. GIS spatial analysis. .. 69

4.2. Geographical Analysis Categories. ... 70
4.2.1. Vector Overlay. .. 73
4.2.2. Raster Overlay. ... 74
4.2.3. Conditional Operators .. 75

4.3. GIS applications. ... 77

4.4. GIS applications in marine safety. ... 78
4.4.1. Automatic Identification System (AIS). 78
4.4.2. Electronic Charts Display and Information System. 79

4.5. Integrated Marine GIS approach in navigational 81

4.6. Marine GIS Roles. ... 81
4.6.1. Coastal Mapping. .. 82
4.6.2. Coastal Charts Database. ... 83

4.7. The Hydrographic Data Base System at NHO. 84
4.7.1. Analogue Chart Data Base System. 84
4.7.2. Digital Chart Data Base System. 85
4.7.3. Integration of Coastal Database with GIS. 85

CHAPTER FIVE: GIS DESIGN AND DATA ANALYSIS RESULTS. 87

5.1. Data Collection and preparation ... 88
5.2. Data entry .. 94
5.3. Design of GIS (Alexandria port and approaches Database). 97
5.4. Rout selection .. 103
5.5. Navigation Aids Analysis .. 105
5.6. Analysis of Quays ... 106

5.7. Analysis of Vessel Discharging ... 107
 5.7.1 General Cargo Vessels. .. 110
 5.7.2. Containers vessel. .. 110
 5.7.3. Coal vessels. .. 111
 5.7.4. Bulk Vessels at Alexandria. Port..................................... 112
 5.7.5. Bulk Vessels at Dekhila Port. 112

CONCLUSION AND RECOMMENDATIONS... 114
 Conclusion.. 115
 General Recommendations.. 116
 The Recommendations in the Navigation Field. 116
 Recommendations for Port authorities. 117
 Special Recommendations. ... 117

REFERENCES... 120

ARABIC SUMMARY ..
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1)</td>
<td>International ECDIS and Co-Organizations</td>
<td>5</td>
</tr>
<tr>
<td>(2.1)</td>
<td>ECDIS Components.</td>
<td>10</td>
</tr>
<tr>
<td>(2.2)</td>
<td>An update message transferred via INMARSAT-C.</td>
<td>26</td>
</tr>
<tr>
<td>(2.3)</td>
<td>Automatic chart corrections.</td>
<td>28</td>
</tr>
<tr>
<td>(2.4)</td>
<td>Example of Manual updating of point and area objects.</td>
<td>30</td>
</tr>
<tr>
<td>(3.1)</td>
<td>Position accuracy and error circle.</td>
<td>35</td>
</tr>
<tr>
<td>(3.2)</td>
<td>Positional uncertainty and ship's symbol.</td>
<td>36</td>
</tr>
<tr>
<td>(3.3)</td>
<td>the problem of stabilization.</td>
<td>43</td>
</tr>
<tr>
<td>(3.4)</td>
<td>An 'Electronic Chart Multi-layer Object Structure'</td>
<td>46</td>
</tr>
<tr>
<td>(3.5)</td>
<td>Targets in the electronic chart.</td>
<td>49</td>
</tr>
<tr>
<td>(3.6)</td>
<td>Starting conditions for the automatic track control.</td>
<td>52</td>
</tr>
<tr>
<td>(3.7)</td>
<td>Ship steering to a previously selected waypoint.</td>
<td>53</td>
</tr>
<tr>
<td>(3.8)</td>
<td>Automatic track control with GPS support.</td>
<td>54</td>
</tr>
<tr>
<td>(3.9)</td>
<td>Recommended AIS-target symbols.</td>
<td>58</td>
</tr>
<tr>
<td>(3.10)</td>
<td>Automated collision avoidance.</td>
<td>64</td>
</tr>
<tr>
<td>(4.1)</td>
<td>GIS Components.</td>
<td>67</td>
</tr>
<tr>
<td>(4.2)</td>
<td>A Road Network.</td>
<td>71</td>
</tr>
<tr>
<td>(4.3)</td>
<td>Polygon-on-Polygon Overlay.</td>
<td>73</td>
</tr>
<tr>
<td>(4.4)</td>
<td>Topologic Overlay and a Graphic over plot.</td>
<td>74</td>
</tr>
<tr>
<td>(4.5)</td>
<td>Raster Overlay.</td>
<td>75</td>
</tr>
<tr>
<td>(4.6)</td>
<td>Buffer zone (Polygon feature).</td>
<td>76</td>
</tr>
<tr>
<td>(5.1)</td>
<td>Paper chart Scanning (Raster Format).</td>
<td>90</td>
</tr>
<tr>
<td>(5.2)</td>
<td>The study area of Alexandria Port.</td>
<td>91</td>
</tr>
<tr>
<td>(5.3)</td>
<td>Image rectification of Alexandria Port.</td>
<td>93</td>
</tr>
<tr>
<td>(5.4)</td>
<td>Image rectification with all themes active.</td>
<td>95</td>
</tr>
<tr>
<td>(5.5)</td>
<td>Query of Depth points.</td>
<td>98</td>
</tr>
<tr>
<td>(5.6)</td>
<td>Query for Fair Way buoys of Alexandria Port.</td>
<td>99</td>
</tr>
<tr>
<td>(5.7)</td>
<td>Query at Dekhila Port.</td>
<td>100</td>
</tr>
<tr>
<td>(5.8)</td>
<td>Query for Ras El-tin Lighthouse.</td>
<td>101</td>
</tr>
</tbody>
</table>
Figure (5.9) Query for Contour 30 meters. .. 102
Figure (5.10) The Best route for the vessel approaching Alexandria 105
Figure (5.11) The main attributes of a certain buoys. 106
Figure (5.12) The attributes of a certain quays. 108
Figure (5.13) Discharge Rate of general cargo ships. 110
Figure (5.14) Discharge Rate of container ships. 111
Figure (5.15) Discharge Rate of coal ships. ... 111
Figure (5.16) Discharge Rate of bulk ships. .. 112
Figure (5.17) Discharge Rate of Ore ships at Dekhila. 113
List of Tables

Table (2.1) Electronic Charts Categories ... 14
Table (2.2) Advantages of Raster and Vector Charts 17
Table (2.3) Disadvantages of Raster & Vector Charts............................. 18
Table (3.1) Sensors for course and speed measurements. 42
Table (3.2) Integrating electronic chart and radar information. 48
Table (3.3) Recommended AIS target symbols according to IMO 'Interim.' .. 61
Table (3.4) Various types of information transmitted by AIS transponder. ... 62
Table (3.5) Update rates of AIS information. 62
Table (5.1) Features Database of Alexandria Approaches area. 103
Table (5.2) Alexandria Port Authority Information at November 2003. 109
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Automatic Identification System.</td>
</tr>
<tr>
<td>ARPA</td>
<td>Auto Radar Plotting Aid.</td>
</tr>
<tr>
<td>CHS</td>
<td>Canadian Hydrographic Services.</td>
</tr>
<tr>
<td>CIS</td>
<td>Canadian Ice Services.</td>
</tr>
<tr>
<td>COG</td>
<td>Course-Over-Ground.</td>
</tr>
<tr>
<td>CPA</td>
<td>Closest Point of Approach.</td>
</tr>
<tr>
<td>DDS</td>
<td>Data Display System.</td>
</tr>
<tr>
<td>DGPS</td>
<td>Differential Global System.</td>
</tr>
<tr>
<td>DLG</td>
<td>Digital Line Graph.</td>
</tr>
<tr>
<td>ECDIS</td>
<td>Electronic Charts Display and Information System.</td>
</tr>
<tr>
<td>ECS</td>
<td>Electronic Chart System.</td>
</tr>
<tr>
<td>EEZ</td>
<td>Economic Exclusive Zone.</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System.</td>
</tr>
<tr>
<td>ENC</td>
<td>Electronic Navigation Charts.</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System.</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Position System.</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interfaces.</td>
</tr>
<tr>
<td>HACAS</td>
<td>Hazard And Collision Avoidance System.</td>
</tr>
<tr>
<td>HO</td>
<td>Hydrographic Office.</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrical Commission.</td>
</tr>
<tr>
<td>IHO</td>
<td>International Hydrographic Organization.</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization.</td>
</tr>
<tr>
<td>MIO</td>
<td>Marine Information Object.</td>
</tr>
<tr>
<td>MMSI</td>
<td>Maritime Mobile Service Identity.</td>
</tr>
<tr>
<td>NAD</td>
<td>North America Datum.</td>
</tr>
</tbody>
</table>
NCGIA : National Center for Geographic Information and Analysis.
NHO : National Hydrographic Office.
NOAA : National Ocean and Atmospheric Administration.
NOS : National Ocean Service.
OCS : Office of Coast Survey.
PC : Personal Computer.
POB : Person Over Board.
RDBMS : Relational Data Base Management System
RENC : Regional Electronic Navigation Center.
RNC : Raster Navigation Charts.
RTCM : Radio Technical Commission For Maritime.
SA : Selective Availability.
SAR : Search And Rescue.
SOLAS : Safety Of Life At Seas convention.
SOG : Speed-Over-Ground.
STDMA : Self-Organized Time Division Multiple Access.
TCPA : Time to The Closest Point of Approach.
TIGEK : Picture Extension format.
USA : United States of America.
VTS : Vessel Traffic Services.
WMO : World Meteorological Organization.
XUPDMAIL : Expand UP Date Mail.