GENERATING COMPUTER-BASED ADVICE IN WEB-BASED DISTANCE EDUCATION ENVIRONMENTS

By

Essam Mahmoud Abdel Monem Kosba

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

University of Leeds
School of Computing

December, 2004

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Abstract

There is an increasing demand for distance education to be implemented nowadays by most educational organizations. The Internet has become the medium for course delivery, and Web Course Management Systems (WCMS) are widely used to deploy distance courses which need to provide appropriate support to both students and instructors. The instructors play a central role in managing the course, and their success in dealing with reported problems in distance learning, such as students’ isolation and disorientation in hyperspace, depends on the understanding the instructors have about what is happening in distance classes. Based on tracking data, most WCMS provide statistical information to help instructors monitor their students. However, there is a lack of automatic features to guide instructors by pointing at important situations and highlighting possible problems. Such features may help instructors, and reduce the workload and communication overhead needed for managing distance classes effectively.

In this thesis, an approach is proposed where an artificial advisor is built to inform course instructors and facilitators about possible problems and needs of individuals and groups of students, as well as to suggest appropriate actions, when possible. A framework named TADV (Teacher ADVisor) has been developed to build fuzzy student, group, and class models based on the tracking data generated by WCMS. A taxonomy containing three main categories of advice related to the performance of individual students, groups of students, and the whole class is proposed, and an advice generator mechanism is developed. Important situations are highlighted to instructors and, when appropriate, possible actions are recommended.

A prototype of TADV is implemented and integrated within an existing WCMS. An empirical evaluation of the prototype has been conducted in a Discrete Mathematics course at the Arab Academy for Science and Technology, Alexandria, Egypt. The evaluative study has shown that TADV provides practical and effective advice. It allows advice generation and informing of instructors, which, in turn, made it easy to send help and feedback to distance students. The instructors confirmed the appropriateness of the generated advice and appreciated the knowledge they gained about their students. The students appreciated the feedback received from the instructors, which was a result of TADV recommendations. The study showed better overall satisfaction and social aspects for the students who used TADV advising features.
To My Dear Wife
Acknowledgments

Without the encouragement and support of many people the progress on this thesis would have been severely impeded. I would like to extend my sincere appreciation to them, even though this gesture is inadequate to measure my appreciation.

My deepest gratitude is due to my supervisors Dr. Vania Dimitrova and Prof. Roger Boyle for their continues support and true help throughout the various stages of this work. Their insights and suggestions have always been on target and timely. Their editorial skills greatly improved this final product. I owe a great debt of appreciation to them for the time, effort, support, and valuable guidance they offered.

Special and deep thanks to Prof. John Self, my supervisor during the first year of my study. Thanks for his ideas, knowledge, and experience. Thanks for his continous advice even after his sudden retirement. Really, I got a great friend.

It gives me great pleasure to express my sincere appreciation to Prof. Gamal El-Din Mokhtar the president of Arab Academy for Science and Technology and Maritime Transport (AAST) - the sponsor of this work – for his sincere support and continues encouragement.

Thanks to Prof. Yousery El-Gamal my local supervisor for his great help and constructive advice. His valuable suggestions and support are gratefully acknowledged.

Dr. Khaled Mahar, the Discrete Mathematics domain expert, has had great influence on this thesis; he helped out with all tasks related to the course and metadata preparation, and the administration of the experimental study conducted. Many thanks.

My thanks are also presented to Engineer Amgad Neamatalla, for his great help with the all tasks related to the implementation of the prototype examined in the experimental study. The list of thanks should be extended to include all members of AAST information centre especially Engineer Tarek El-Kalioby, Mr. Mohammed Metwally, and Mrs Azza El-Shaar for their kind help in preparing many parts of the prototype.

Last, but not the least, thanks to my wife and sons for their absolute support and encouragement with patience and love.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAST</td>
<td>Arab Academy for Science and Technology</td>
</tr>
<tr>
<td>AASTOLP</td>
<td>AAST On-line Learning Portal</td>
</tr>
<tr>
<td>AG</td>
<td>Advice Generator</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>AIED</td>
<td>Artificial Intelligence in Education</td>
</tr>
<tr>
<td>CF</td>
<td>Certainty Factor</td>
</tr>
<tr>
<td>CM</td>
<td>Class Model</td>
</tr>
<tr>
<td>CSCL</td>
<td>Computer-Supported Collaborative Learning</td>
</tr>
<tr>
<td>DE</td>
<td>Distance Education</td>
</tr>
<tr>
<td>DKB</td>
<td>Domain Knowledge Base</td>
</tr>
<tr>
<td>DMK</td>
<td>Domain Meta Knowledge</td>
</tr>
<tr>
<td>GM</td>
<td>Group Model</td>
</tr>
<tr>
<td>GPA</td>
<td>General Point Average</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper Text Mark-up Language</td>
</tr>
<tr>
<td>IEEE LOM</td>
<td>Institute of Electrical and Electronics Engineer's Learning Object and Metadata</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Tutoring Systems</td>
</tr>
<tr>
<td>MB</td>
<td>Measure of Belief</td>
</tr>
<tr>
<td>MD</td>
<td>Measure of Disbelief</td>
</tr>
<tr>
<td>SDB</td>
<td>Student DataBase</td>
</tr>
<tr>
<td>SMB</td>
<td>Student Model Builder</td>
</tr>
<tr>
<td>TADV</td>
<td>Teacher Advisor</td>
</tr>
<tr>
<td>WBDE</td>
<td>Web-Based Distance Education</td>
</tr>
<tr>
<td>WBITS</td>
<td>Web-Based Intelligent Tutoring Systems</td>
</tr>
<tr>
<td>WCMS</td>
<td>Web Course Management Systems</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>
Conventions

The meaning of learner and student in this thesis is assumed equal. They refer to a person studying with a computer-based educational system. In the same line of thought, we assume that both terms learner model and student model are identical. They can be used in the same context to name the model built inside a computer system to present aspects of the knowledge of a person working with the system.

The meaning of instructor, teacher, and facilitator is assumed equal. They refer to a person teaching students via distance.

Throughout this thesis we will use male gender for the learner or the teacher, which is purely for convenience. In the exposition, he shall be taken to mean he or she and his shall be taken to mean his or her.

Throughout the whole thesis, we refers to the author and our refers to author’s.
Publications

Some of the work in this thesis has been published prior to thesis submission.

Contents

Abstract .. ii
Acknowledgements .. iv
Abbreviations ... v
Conventions ... vi
Publications ... vii
List of Figures ... xiii
List of Tables ... xiv

Chapter 1 Introduction ... 1

2.1. Introduction ... 8
2.2. Distance Education ... 9
2.3. Web-Based Distance Education (WBDE) ... 10
2.4. Using WCMS in WBDE Environments ... 14
 2.4.1. Student tracking data ... 16
 2.4.2. Learning object metadata standards .. 17
2.5. Computer-Based Advising in Educational Systems .. 20
 2.5.1. Characteristics of computer-based advice .. 21
 2.5.2. Factors that facilitate advice-giving in educational systems .. 22
2.6. Intelligent Web-Based Distance Education ... 23
 2.6.1. Intelligent Tutoring Systems (ITS) .. 24
 2.6.2. Web-Based Intelligent Tutoring Systems (WBITS) .. 27
 2.6.3. Intelligent WCMS .. 29
2.7. A Brief Review of AIED Systems that Aim to Support Teachers ... 31
2.8. Summary .. 34

Chapter 2 Using Intelligent Tools to Support Teachers in WBDE ... 36

3.1. Introduction ... 36
3.2. Brief Overview of Student Modelling ... 37
3.3. Brief Review of Student Modelling Approaches ... 38
 3.3.1. Overlay student modelling ... 38
ix

3.3.2. Buggy (error) student modelling .. 40
3.3.3. Learner-based modelling ... 42
3.3.4. Discussion ... 42
3.4. Student Modelling and Uncertainty.. 44
3.4.1. Student modelling using statistical reasoning 45
3.4.2. Fuzzy student modelling ... 50
3.5. Group Modelling .. 54
3.6. Summary ... 57

Chapter 4 The TADV Architecture and Student Modelling Mechanism 59
4.1. Introduction .. 59
4.2. TADV Architecture .. 60
4.3. Courseware Structure and Meta-Knowledge.. 61
 4.3.1. Domain Knowledge Base ... 62
 4.3.2. Domain Meta-Knowledge module (DMK) 63
4.4. Student Model / Group and Class Models.. 68
 4.4.1. Student Model (SM)... 68
 4.4.2. Group Model (GM) .. 71
 4.4.3. Class Model (CM) .. 71
4.5. Student Model Builder ... 72
4.6. Diagnosing Student Knowledge and Evaluation Mechanisms................. 73
 4.6.1. Interpreting the student's interactions ... 74
 4.6.2. Initialising student, group and class models................................. 79
 4.6.3. Diagnosing knowledge status ..80
 4.6.4. Diagnosing communication status...84
4.7. Summary... 86

Chapter 5 Advice Generation... 87
5.1. Introduction .. 87
5.2. Proposed Advice Types .. 87
 5.2.1. Generating Type-1 Advice ... 90
 5.2.2. Generating Type-2 Advice ... 91
 5.2.3. Generating Type-3 Advice ... 92
5.3. Advice Generating Criteria... 93
Chapter 6 The TADV Prototype ... 100

6.1. Introduction .. 100
6.2. WCMS and Implementation Tools.. 101
 6.2.1. Centra Knowledge Server ... 101
 6.2.2. Implementation tools .. 102
6.3. Domain and Course Preparation .. 103
 6.3.1. Discrete Mathematics domain .. 103
 6.3.2. Course preparation .. 103
 6.3.3. Metadata acquisition .. 105
6.4. Implementation of the TADV Models and their Integration in CENTRA .. 107
6.5. Designing Facilitator and Student Interfaces 111
 6.5.1. Facilitator’s main menu .. 111
 6.5.2. Student’s main menu ... 119
6.6. Examples of TADV Advice .. 124
 6.6.1. Examples of advice about individual students 124
 6.6.2. Examples of advice about groups of students 127
 6.6.3. Examples of advice about the whole class 128
6.7. Summary ... 130

Chapter 7 TADV Evaluation ... 131

7.1. Introduction .. 131
7.2. Review of Relevant Evaluation Approaches 131
7.3. Aims of the TADV Evaluation ... 134
 7.3.1. Questions addressed in the TADV formative evaluation ... 134
 7.3.2. Questions addressed in the TADV summative evaluation ... 134
7.4. TADV Formative Evaluation .. 135
7.5. TADV Summative Evaluation: The Experimental Study 137
 7.5.1. General information about the experimental study 137
 7.5.2. The agreement with the administration 139
 7.5.3. Actions carried out before starting the experimental study ... 140
 7.5.4. Actions carried out during the experiment 141
7.5.5. Actions carried out after the experiment ... 141
7.5.6. Summary of the data collected .. 142
7.5.7. Overview of the system usage during the study 143
7.6. About the suitability of TADV advice .. 144
 7.6.1 General feedback about suitability of advice 145
 7.6.2 Suitability of advice types ... 149
 7.6.3 Summary of findings about advice suitability 160
7.7. Benefits of TADV for Facilitators .. 160
 7.7.1 General benefits gained from TADV .. 161
 7.7.2 Benefits gained from TADV advising features 162
7.8. Benefits of TADV for Students .. 166
 7.8.1 Analysis of students’ questionnaire ... 166
 7.8.2 Analysis of learning gains using pre/post tests 168
7.9. Summary .. 170

Chapter 8 Conclusion .. 171
 8.1. Introduction .. 171
 8.2. Summary of the Work .. 171
 8.3. Contributions .. 175
 8.3.1. Contributions to Web-Based Distance Education 175
 8.3.2. Contributions to Artificial Intelligence in Education 177
 8.3.3. Contributions to Intelligent Web course management systems 178
 8.4. Reflection on the Decisions Made and the Methodology Used 178
 8.4.1. Domain representation .. 179
 8.4.2. The student modelling approach ... 179
 8.4.3. The advice taxonomy ... 180
 8.4.4. The TADV evaluation .. 180
 8.5. Future Work ... 182
 8.5.1. Improvements and applications of the current architecture 182
 8.5.2. Feasible research directions with TADV 183
 8.5.3. Long-term research directions .. 186

References ... 189
List of Figures

Figure 4.1 TADV Architecture.. 61
Figure 4.2 Course structure... 63
Figure 4.3 Types of relations between domain concepts....................................... 64
Figure 4.4 A part from the concept map of the “Functions” lesson in a Discrete Mathematics course ... 65
Figure 4.5 The components of the TADV Domain Meta-Knowledge Model 66
Figure 4.6 TADV Student, Group, and Class Models.. 69
Figure 4.7 Structure of the Student Model Builder in TADV......................... 72
Figure 4.8 The TADV belief graph or the fuzzy membership function 75

Figure 5.1 Advice types proposed in TADV.. 89
Figure 5.2 Advice Generation Data Model... 97
Figure 5.3 Advice Generation Criteria.. 99

Figure 6.1 A screen shot showing contents of the learning object
107_One_to_One_Function_E1 .. 105
Figure 6.2 One of the assessment quizzes related to the “Functions” lesson .. 106
Figure 6.3 The Architecture of the TADV prototype: main components and implementation tools ... 110
Figure 6.4 Facilitator’s main screen .. 112
Figure 6.5 System parameters screen ... 112
Figure 6.6 Screen for selecting advice types.. 114
Figure 6.7 Screen used to define a course.. 115
Figure 6.8 Screen used to define the metadata for domain concepts.............. 115
Figure 6.9 Screen used to define metadata for assessment quizzes............. 116
Figure 6.10 Screen used to enter student’s profile ... 117
Figure 6.11 Screen shows the list of students assigned to Class2 118
Figure 6.12 The screen used to display advice .. 119
Figure 6.13 Screen showing a student knowledge model.............................. 120
Figure 6.14 Student’s main screen .. 120
Figure 6.15 List of tracks (concepts) displayed by CENTRA 121
Figure 6.16 List of learning objects displayed by CENTRA 122
Figure 6.17 Part of the Discrete Mathematics course calendar 123
Figure 6.18 Student’s feedback screen ... 123

Figure 7.1 Filtration button in the screen used to display advice 147
Figure 7.2 Type-1 advice (individual student level) - the facilitators’ rating ... 149
Figure 7.3 Percentages of Type-1 advice (student level) sent by the facilitators .. 151
Figure 7.4 Type-1 advice (individual student level) – the students’ rating 152
Figure 7.5 Type-2 advice (group level) – the facilitators’ rating 154
Figure 7.6 Percentages of Type-2 advice (group level) sent by the facilitators ... 155
Figure 7.7 Type-2 advice (group level) – the students’ rating 156
Figure 7.8 Type-3 advice (class level) - the facilitators’ rating 157
Figure 7.9 Percentages of Type-3 advice (class level) sent by the facilitators ... 158
Figure 7.10 Type-3 advice (class level) – the students’ rating 158

Figure 8.1 Possible output from a tool for visualising student knowledge state that can be integrated in TADV 186
List of Tables

Table 5.1 Examples of defining situations for generating advice to individual students (Type-1), groups of students (Type-2) and the whole class (Type-3) ... 95

Table 7.1 Involvement of participants in the experimental study 143
Table 7.2 Control group vs. experimental group .. 144
Table 7.3 Example situations of Type1-1 advice (student’s knowledge status) ranked as "Do not know" ... 150
Table 7.4 Example situations of Type1-1 advice (student’s knowledge status) ranked as "Not Appropriate" ... 151
Table 7.5 Facilitator forgot sending his composed feedback 153
Table 7.6 Example situations of Type-3 advice (most class members did not start the course) ranked as "Not Appropriate" 159
Table 7.7 Times spent in the advising sessions .. 165
Table 7.8 Class-1 vs. Class-2 - course information .. 166
Table 7.9 Class-2 – advising and feedback information 167
Table 7.10 Class-1 vs. Class-2 – social aspects ... 168
Table 7.11 Class1 vs. Class2 – overall satisfaction part 168