WOOD PULP MICROFIBERS IN CEMENT-BASED COMPOSITES: IMPROVING FIBER DISTRIBUTION AND CHARACTERIZING COMPOSITE BEHAVIOR

A Dissertation Presented to The Academic Faculty

by

Nabil H. El-Ashkar

In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Civil Engineering

> Georgia Institute of Technology December, 2002

Copyright © 2002 by Nabil H. El-Ashkar

WOOD PULP MICROFIBERS IN CEMENT-BASED COMPOSITES: IMPROVING FIBER DISTRIBUTION AND CHARACTERIZING COMPOSITE BEHAVIOR

Approved by:

Dr. Kimberly E. Kurtis

Dr. Laurence J. Jacobs

Dr. Lawrence F. Kahn

Dr. James Lai

Dr. Hiroki Nanko

DEDICATION

To my parents

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Kimberly E. Kurtis for her great assistance and support. I would like also to deeply thank her for all the encouragement and invaluable guidance through the entire course of this study that will be an asset for me through my entire academic life.

I would like to extend my sincere appreciation to Dr. Hiroki Nanko who was a great help and inspiration through the course of this project. I would like to thank him also for great help and expertise in preparation and scanning electron microscopy imaging of different samples.

I would like to acknowledge the faculty of the School of Civil and Environmental Engineering who never hesitated to share their experience with me; special thanks must go to Dr. Larry Kahn, Dr. James Lai, Dr. Larry Jacobs, Dr. Rami Haj-Ali and Dr. Aris Georgakakos.

I would like gratefully to acknowledge support from U.S. National Science Foundation award CMS-0122068, which is part of an initiative co-sponsored by the Partnership for Advancing Technologies in Housing (PATH), as well as support from the Institute for Paper Science and Technology (IPST) seed grant program and PATHWAYS program.

I would like to thank my colleagues who helped me through the period of my study in Georgia Tech; special thanks to Ben Mohr for his help in sample preparation and

to Nikhila Naik, Courtney Collins and Mauricio Lopez for their support and advise. I also acknowledge Shaobo Pan for technical assistance and helping in sample preparation.

Finally, I would like to show my sincere gratitude to my parents and my family for their endless support without which I could never survived all the difficulties and hard times through the years. My deepest thanks are extended to my wife for her endless patience and care and to my son Mostafa.

TABLE OF CONTENT

Dedication Acknowledgement Summary Table of Content List of Tables List of Figures	iii iv vi vii xi xi
Chapter I - Introduction	1
References	8
Chapter II - Critical Review: Use of Pulp Fibers in Cement-based Materials	10
2.1 Fiber reinforced cement-based composites	10
2.2 Wood Pulp Microfibers	11
2.2.1 Introduction	11
2.2.2 Wood structure	14
2.2.2.1 The structure of softwoods	15
2.2.2.2 The structure of hardwoods	17
2.2.3 Ultra-structure and chemistry of wood pulp microfibers	18
2.2.4 Pulping	21
2.2.4.1 Mechanical pulping	22
2.2.4.2 Chemical pulping	22
2.2.4.3 Semichemical pulping	23
2.2.5 Bleaching	24
2.3 Reinforcement of cement-based composites with wood pulp microfibers	24
2.3.1 Production methods and techniques	26
2.3.2 Properties of wood pulp fiber cement-based composites	28
2.3.2.1 Effect of fiber volume fraction	28
2.3.2.2 Effect of Curing	29
2.3.2.3 Effect of matrix composition	29
2.3.2.4 Effect of wood fiber type and processing method	30
2.3.2.5 Effect of fiber treatment	33
2.3.2.6 Effect of moisture state	35
2.3.2.7 Volumetric changes and plastic and drying shrinkage cracking2.3.3 Microstructure and role of fiber matrix interface	36 37
	37
2.3.4 Durability, weathering and long term performance References	38 55
References	22

	ter III - Experimental Details	60
3.1	Overview of Research Plan	60
3.2	Materials	60
3.3	Mix Design	62
3.4	Mixing Methods	70
3.5	Compression and flexure testing	75
3.5.1	Sample preparation	75
	Test equipment and methods	76
3.6	Shrinkage testing	76
3.6.1	6 C	76
	Test methods and equipment	78
Refer		89
Chap	ter IV - Microfiber Treatment and Distribution	91
4.1	Introduction	91
4.2	Statement of research needs	92
4.3	Treatment Methodology	94
	Mechanical treatment	94
4.3.2	Chemical treatment	96
4.4	Optimization of fiber processing method	98
	Ash content	99
	Microscopy	10
Refer	1.	11
Char	ter V - Fresh Properties and Compressive Characteristics of Pulp Fiber	
-	forced Mortar and Concrete	
IXCIIII		11
5.1	Introduction	
5.1	Introduction Fresh properties	11
5.2	Fresh properties	11 11
5.2 5.2.1	Fresh properties Effect of microfiber volume fraction on flow	11 11 11
5.2 5.2.1 5.2.2	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow	11 11 11 11
5.2 5.2.1 5.2.2 5.3	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics	11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength	11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength	11 11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength	11 11 11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength	11 11 11 11 11 11 11 11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in	11 11 11 11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression.	11 11 11 11 11 11 11 11 12 12
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression.	11 11 11 11 11 11 11 11
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences	11 11 11 11 11 11 11 11 12 12 14
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer Chap Toug	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences ter VI - Review for the Methods Used to Measure and Evaluate Flexural hness of Fiber Reinforced Cement-Based Composites	11 11 11 11 11 11 11 11 12 12 14 14
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer Chap Toug 6.1	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences ter VI - Review for the Methods Used to Measure and Evaluate Flexural hness of Fiber Reinforced Cement-Based Composites Introduction	11 11 11 11 11 11 11 11 12 12 14 14
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer Chap Toug 6.1 6.2	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences ter VI - Review for the Methods Used to Measure and Evaluate Flexural hness of Fiber Reinforced Cement-Based Composites Introduction Methods for testing flexural toughness of cement-based composites	11 11 11 11 11 11 11 11 12 12
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer Chap Toug 6.1 6.2 6.3	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences ter VI - Review for the Methods Used to Measure and Evaluate Flexural hness of Fiber Reinforced Cement-Based Composites Introduction Methods for testing flexural toughness of cement-based composites Important test parameters	11 11 11 11 11 11 11 11 12 12
5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 Refer Chap Toug 6.1 6.2	Fresh properties Effect of microfiber volume fraction on flow Effect of treatment on flow Compressive characteristics Effect of microfiber volume fraction on mortar compressive strength Effect of microfiber treatment on mortar compressive strength Effect of age on WPM- reinforced mortar compressive strength Effect of testing condition on mortar compressive strength Effect of pulp fiber reinforcement on properties of concrete in compression. ences ter VI - Review for the Methods Used to Measure and Evaluate Flexural hness of Fiber Reinforced Cement-Based Composites Introduction Methods for testing flexural toughness of cement-based composites Important test parameters	111 111 111 111 111 111 111 111 112 122 14 14 14 14

6.3.2	Specimen manufacture method	147
6.3.3	Specimen configuration	147
6.3.4	Testing systems	148
6.3.5	Loading configurations	149
6.3.6	Measuring techniques	150
6.4	Characterization of cement-based composites flexural toughness	155
6.4.1	Energy-based methods	155
6.4.2	Strength-based methods	159
6.4.3	Deflection-based methods	164
6.5	Concerns about methods for flexural toughness characterization	164
6.5.1	Measurement and definition of first crack deflection	164
6.5.2	Loading configuration and specimen size	167
6.5.3	Instability after matrix cracking	169
Refer	ences	180

Chapter VII - A New Simple and Practical Method to Characterize the Toughness Based on Flexural Load-Deflection Response of Fiber Reinforced Cement-Based Composites

Com	posites	104
7.1	Need for new method	184
7.2	Scope	187
7.3	Principals of the proposed method	188
7.4	Description of the proposed method	190
7.4.1	Identifying the first crack point on the load-deflection curve	190
7.4.2	Modeling unreinforced cement-based composite flexural behavior	193
7.4.3	Introducing dimensionless toughness indices	195
7.5	Special cases	199
7.5.1	Instability after matrix cracking	200
7.5.2	Deflection measured by crosshead movement	203
7.6	Calculations	205
7.7	Examples and verification	206
7.7.1	Simple example	207
7.7.2	Effect of different deflection measuring techniques	208
7.7.3	Effect of instability after matrix cracking	211
7.7.4	Sensitivity of the proposed indices to different fiber parameters	212
7.8	Advantages and disadvantages of the new method	215
7.9	Further research	216
Refer	rences	235
Chap	oter VIII - Flexural Behavior of Wood Pulp Microfiber Cement-Based	
Com	posites	237
8.	1. Effect of fiber volume fraction	238
8.	2. Effect of different fiber treatment	244
8.2.1.	Effect of fibrillation	245

8.2.2	Effect of type of siliceous particles	246
8.2.3.	Effect of amount of siliceous particles	248

8.2.4.	Summary of effect of treatment	252
8.3.	Effect of fiber length	253
8.4.	Effect of mixing softwood and hardwood microfibers	256
8.5.	Effect of age	257
8.6.	Effect of wet and dry testing conditions	263
Referen	ces	317

Chap	ter IX - Shrinkage Properties of Wood Pulp Microfiber Cement-J	Based
Com	posites	319
9.1	Introduction	319
9.2	Effect of wood pulp microfibers on unit weight	320
9.3	Effect of fiber volume fraction on free shrinkage	322
9.4	Effect of fiber treatment on free shrinkage	323
9.5	Effect of fiber length on free shrinkage	325
9.6 Restrained shrinkage		325
Refer	References	
Chap	ter IX - Summary, Conclusions, and Future Research	337
10.1	Summary	337
10.2	Conclusions	339
10.3	Recommendations for further research	343

LIST OF TABLES

Table (1-1)	Some typical properties of Douglas Fir fibers and other fibers and microfibers.	7
Table (2-1)	Typical properties of different common used natural fibers [ACI 544,1R-96]	43
Table (2-2)	Major types of cells in softwood [Kocurek and Stevens, 1983]	44
Table (2-3)	Major types of cells in hardwood [Kocurek and Stevens, 1983]	44
Table (2-4)	General Classification of pulping processes [Smook, 1982]	45
Table (3-1)	Chemical analysis of the used cement	80
Table (3-2)	The composite constituents according to mix design I	81
Table (3-3)	The composite constituents according to mix design II	81
Table (5-1)	Flow data for pulp fiber reinforced mortar	126
Table (5-2)	Average compressive strength for different fiber volume	
	fractions and different softwood fiber treatment	127
Table (5-3)	Effect of testing condition on the average compressive strength of pulp fiber reinforced mortar	128
Table (5-4)	Properties for - pulp fiber reinforced concrete tested in	120
1000 (5-4)	compression at 7 and 28 days.	129
Table (7-1)	Method of calculation the post-cracking toughness indices using	
	three different load-deflection curves. From [Banthia and	
T 11 (T A)	Trottier, 1995]	217
Table (7-2)	Calculation of post-cracking toughness indices for different load- deflection curves	218
Table (7-3)	Post-cracking toughness indices for different load-deflection	
	curves and other corresponding toughness indices. From	210
T 11 (7 4)	[Johnston 1995]	219
Table (7-4)	Post-cracking toughness indices for different load-deflection	
	curves and the other corresponding toughness indices for	220
$T_{-1}(1, (7, 7))$	different open loop and closed loop testing systems.	220
Table (7-5)	Post-cracking toughness indices and other toughness indices for different cement based mixes. From [Chen <i>et al.</i> , 1995]	221
T_{-1} (0 1)	Elements at any other dand deviation for such as la mices films	

Table (8-1)Flexure strength and standard deviation for wood pulp microfiber
reinforced mortar samples using different fiber volume fraction,

	different treatment types and levels and different lengths at 7 and 28 days	268
Table (8-2)	Post cracking flexure toughness parameters for wood pulp microfiber reinforced mortar samples using different fiber volume fraction, different treatment types and levels and	
	different lengths at 7 and 28 days	270
Table (8-3)	Flexure strength and standard deviation for wood pulp microfiber reinforced mortar samples showing the effect of age up to 12	
	weeks	272
Table (8-4)	Post cracking flexure toughness parameters for wood pulp microfiber reinforced mortar samples showing the effect of age	
	up to 12 weeks	272
Table (8-5)	Flexure strength and standard deviation for wood pulp microfiber reinforced mortar samples showing the effect of moisture state at	
	testing.	273
Table (8-6)	Post cracking flexure toughness parameters for wood pulp microfiber reinforced mortar samples showing the effect of	
	moisture state at testing.	274

LIST OF FIGURES

Figure (2-1)	Two diagrams showing the three major structural planes of wood - (R) radial - (T) tangential - (X) transverse [Kocurek and	
	Stevens, 1983]	46
Figure (2-2)	Cross section sketch of a mature stem, showing outer bark, inner	
8	bark, sapwood and heartwood [Smook G. A. 1982]	46
Figure (2-3)	A wood block sketch illustrating the structural features of	-
0	softwood [Smook G. A. 1982]	47
Figure (2-4)	A wood block sketch illustrating the structural features of a	
8	hardwood [Smook G. A. 1982]	47
Figure (2-5)	Diagramed major cell types in softwoods and hardwoods. All	
0	diagrams are at the same magnification to show the relative sizes	
	of these elements [Kocurek and Stevens, 1983]	48
Figure (2-6)	The chemical components of wood [Smook, 1982]	49
Figure (2-7)	Cellulose Structure [Smook, 1982]	49
Figure (2-8)	Diagrammatic Representation of cellulose in the wood fiber wall	
	[Kocurek and Stevens, 1983]	50
Figure (2-9)	Wall structure of softwood tracheid [Rance, 1980]	51
Figure (2-10)	Commercial manufacturing for fiber-cement products A.	
	Reticem process - B. Pultrsion process [Shao et al., 1995]	51
Figure (2-11)	Schematic description of the Hatschek process [Bentur and	
	Mindess, 1990]	52
Figure (2-12)	Effect of fiber mass fraction on the flexural strength (A) and	
	toughness (B) [Coutts, 1987b]	52
Figure (2-13)	Effect of fiber type on the flexural strength (A) and toughness	
	(B) [Coutts, 1987c]	53
Figure (2-14)	Effect of various testing conditions on the flexural strength (A)	
	and toughness (B) [Coutts, 1984]	54
E_{i} Eigure $(2, 1)$	Elow abort for the study program	82
Figure $(3-1)$	Flow chart for the study program	82
Figure (3-2) Figure (3-3)	Hobart mixer used in mixing the Mortar samples	83
Figure (3-3) Figure (3-4)	Different mixing tools Compression Testing Machine	83 84
Figure (3-4)	Flexural test setup	84
Figure (3-6)	Arrangement and dimensions for the free shrinkage molds	04
I iguit $(5-0)$	[ASTM C490]	85
Figure (3-7)	Ring test setup used in measuring the restrained shrinkage	05
$1 \operatorname{Igure}(5^{-7})$	cracking	86
Figure (3-8)	Graph showing the detailed dimensions for the restrained	00
- 19un (() ())	shrinkage test setup (the ring test)	87
Figure (3-9)	Length change apparatus used for measuring free shrinkage	88
		00

Figure (4-1)	Sketch for water Molecules Showing Hydrogen bond [Clark, 1985]	103
Figure (4-2)	Sketch illustrating different levels of hydrogen bonding [Smook, 1982]	103
Figure (4-3)	Sketch showing the used beater [Clark, 1985]	103
Figure (4-4)	Diagram of the cell wall structure [Clark, 1985]	103
Figure (4-5)	SEM images for unbeaten and beaten softwood fibers [Clark, 1985]	105
Figure (4-6)	Canadian Standard Freeness Tester [Clark, 1985]	104
Figure (4-7)	Sketch showing the chemical treatment mechanism.	105
Figure (4-8)	Effect of cationic starch on the amount of silica particles attached to the fiber surface	105
Figure (4-9)	SEM image for WPM beaten and treated with fly ash	106
Figure (4-10)	-	106
Figure (4-11)	SEM for WPM beaten and treated with silica fume	107
Figure (4-12)		108
Figure (4-13)	CLSM image for samples with untreated softwood pulp fiber; $V_f=0.75$ %	108
Figure (4-14)	SEM image for samples with treated softwood pulp fiber; $V_f=1.2$ %	109
Figure (4-15)	SEM image for samples with treated hardwood pulp fiber; $V_f = 2 \%$	109
Figure (5-1)	Effect of volume fraction on the workability (flow %) of fiber reinforced mortar for different fiber treatments	130
Figure (5-2)	Effect of treatment on the workability of fiber reinforced mortar measured as flow (%)	130
Figure (5-3)	Effect of fiber volume fraction on the compressive strength of	
8	fiber reinforced mortar (fly ash content = 40%)	131
Figure (5-4)	Effect of fiber volume fraction on the compressive strength of	
0	fiber reinforced mortar (fly ash content = 50%)	131
Figure (5-5)	Fiber reinforced mortar compressive sample tested to a large	
C (deformation (left) compared to untested sample (right).	132
Figure (5-6)	Effect of treatment methods on the fiber reinforced mortar	
C	compressive strength (fiber volume fraction 0.6 %)	132
Figure (5-7)	Effect of treatment methods on the fiber reinforced mortar	
C	compressive strength (fiber volume fraction = 1.2 %)	133
Figure (5-8)	Effect of treatment method on the fiber reinforced mortar	
- ` /	compressive strength (fiber volume fraction = 2%)	133
Figure (5-9)	Effect of age on the compressive strength of fiber reinforced	
	mortar	134

Figure (5-10)	Effect of testing condition on the compressive strength of fiber	
	reinforced mortar at 7 days age	135
Figure (5-11)	Effect of testing condition on the compressive strength of fiber	
	reinforced mortar at 28 days age	135
Figure (5-12)		
	compression.	136
Figure (5-13)	1 0	
	the fiber reinforced concrete at 7 and 28 days age	136
Figure (5-14)	Effect of fiber volume fraction on the modulus of elasticity in	
	compression for fiber reinforced concrete at 7 and 28 days age	137
Figure (5-15)	Effect of fiber volume fraction on the toughness in compression	
	for fiber reinforced concrete at 7 and 28 days age	137
Figure (5-16)	The WPM arresting concrete cylinder crack	138
Figure (5-17)		
8	age	139
Figure (5-18)	Stress-strain behavior for fiber reinforced at 28 days age	140
1.8000 (0 10)		1.0
Figure (6-1)	Representation of different methods used in Evaluation flexural	
0	toughness	170
Figure (6-2)	Different load-deflection curves captured by different loading	
	systems [Chen L. et al. 1995]	171
Figure (6-3)	A photo showing the loading and measuring setup for capturing	1,1
1 iguite (0 5)	the load-deflection response of fiber reinforced concrete while	
	measuring the net deflection. [Johnston, 1995]	171
Figure (6-4)	Different deflection measuring systems for capturing the net	1/1
1 igure (0-4)		
	deflection A. Japanese Yoke B. Top LVDT's C. Side LVDT	170
$\mathbf{E}_{\mathbf{r}}$	[Chen et al. 1995]	172
Figure (6-5)	Differences in the load-deflection curve due testing in different	172
	laboratories using different testing equipment [Chen <i>et al.</i> 1995]	173
Figure (6-6)	Effect of different measurement system on capturing the load-	
	deflection response [Banthia and Trottier, 1995-1]	173
Figure (6-7)	Loading System to introduce a stable crack in fiber reinforced	
	concrete specimen [ASTM C1399]	174
Figure (6-8)	Comparison of closed-loop and residual strength test method	
	curves for concrete with 0.5% of fibrillated polypropylene fiber	
	(Banthia and Duby, 1999]	174
Figure (6-9)	Toughness indexes from flexural load-deflection diagram [ACI	
	544]	175
Figure (6-10)	Definition of Barr's toughness index [Barr and Hasso, 1985]	175
	Definition of Wang's toughness index [Wang and Baker, 1982]	176
	Toughness measures in German recommendations for evaluating	
0 ()	flexural toughness of fiber reinforced concrete [Gopalaratnam	
	and Gettu, 1995]	176
Figure (6-13)		110
- iguie (0 15)	fiber reinforced concrete [Banthia and Trottier, 1995-1]	177
	Hoer remitted concrete [Bunting and Hourer, 1995-1]	1//

Figure (6-14)	Load-deflection curves for the same beam but including and excluding extraneous deflection [Banthia and Trottier, 1995-1]	177
Figure (6-15)	Initial ascending part of a Load-deflection curve [Banthia and Trottier, 1995-1]	178
Figure (6-16)	Differences between the third point loading test and center point loading test	178
Figure (6-17)	•	179
Figure (6-18)	Stable and unstable failure in the fiber reinforced concrete [Banthia and Trottier, 1995-1]	179
Figure (7-1)	Two different flexural behaviors for FRCCBC; for example: sample 1 can represents a composite reinforced with long fibers but with low fiber volume fraction, and sample 2 can represent a composite with shorter fibers and higher fiber volume fraction.	223
Figure (7-2)	Different flexural behavior for fiber reinforced cement-based composites - Responses 1, 2 and 3 show load drop while 4 shows no load drop	223
Figure (7-3)	Defining the first crack point on the load-deflection curve of the FRCBC	224
Figure (7-4)	Modeling unreinforced matrix	224
Figure (7-5)	The proposed parameters to describe the load-deflection curve	225
Figure (7-6)	Removing the unstable part after the load drop in different cases	226
Figure (7-7)	A graph showing the extraneous deformations in the flexural testing	227
Figure (7-8)	(A) A sketch for flexural load-deflection curve for FRCBC with the deflection measured using three different methods - (B) A sketch for flexural load-deflection curve for FRCBC with the deflection measured using three different methods but with the peak load location coincided at the same point.	228
Figure (7-9)	Load-deflection curves for plain and steel fiber reinforced concrete beams [Banthia and Trottier, 1995]	229
Figure (7-10)	Effect of extraneous deformation on load-deflection curves [Chen <i>et al.</i> , 1995]	229
Figure (7-11)	Load-deflection plots for hooked-end steel fiber reinforced concrete beam (fiber volume fraction = 0.5%) showing the influence of different methods of deflection measurement. [El-Shakra and Gopalaratnam, 1993].	230
Figure (7-12)	Load-deflection plots for a large unnotched polypropylene fiber reinforced beam (Type C - fiber volume fraction = 0.1%) showing the influence of different methods of deflection measurement [Completentment et al. 1001]	230
Figure (7-13)	measurement. [Gopalaratnam <i>et al.</i> , 1991] Post-cracking toughness indices calculated from three load- deflection curves measured for the same specimen but using different deflection measuring techniques as Figure (6-6) by	250
	Banthia and Trottier [1995]	231

Figure (7-14)	Post-cracking toughness indices for the load-deflection curves in	
F: (7.15)	Figure (7-10) captured by Chen <i>et al.</i> [1995]	231
Figure (7-15)		
	deflection curves (A) Continued by El shelters and Considerations [1002] in Figure	
	(A) Captured by El-shakra and Gopalaratnam [1993] in Figure (6-14)	
	(B) Captured by El-shakra and Gopalaratnam [1993] in Figure	
	(7-11)	
	(C) Captured by Gopalaratnam <i>et al.</i> [1991] in Figure (7-12)	232
Figure (7-16)	Comparison of (a) ASTM C1018 I20 values, and (b) Japanese	_
0 ()	toughness values for: 0.25% steel fiber reinforced concrete mix	
	(Mix 2) and 0.2 % polypropylene fiber reinforced concrete mix	
	(Mix 5) [Chen <i>et al.</i> , 1995]	233
Figure (7-17)	Calculated post-cracking toughness for Mix 2 and Mix 5. Study	
	by [Chen <i>et al.</i> , 1995]. (A) for N_R - (B) for N_S .	234
Figure (8-1)	Flexural strength and toughness parameter N _s for different fiber	
1 iguie (0-1)	volume fractions (Fly ash content 40 %)	275
Figure (8-2)	Toughness parameter N_r for different fiber volume fractions (Fly	270
8	ash content 40 %) - 7 days	276
Figure (8-3)	Toughness parameter N _r for different fiber volume fractions (fly	
	ash content 40%) - 28 days	276
Figure (8-4)	Flexural load-deflection curves for different fiber volume	
	fractions ($V_f=0.6, 1.2, 2.0 \%$) at 7 & 28 Days (fly ash content =	_
T : (0, T)	40 %)	277
Figure (8-5)	Flexural strength and toughness parameter N_s for different fiber	270
E_{i}	volume fractions (fly ash content 50 %)	278
Figure (8-6)	Toughness parameter N_r for different fiber volume fractions (fly ash content 50 %) - 7 days	279
Figure (8-7)	Toughness parameter N_r for different fiber volume fractions (fly	219
I igure (0^{-7})	ash content 50 %) - 28 days	279
Figure (8-8)	Flexural Load-Deflection Curves For different fiber volume	212
8. ()	fraction ($V_f=0.6, 1.2, 2.0$ %) at 7 & 28 Days (fly Ash content =	
	50 %)	280
Figure (8-9)	Flexural strength and toughness parameter N _s for different fiber	
	volume fractions (fly ash content 68 %)	281
Figure (8-10)	Toughness parameter N_r for different fiber volume fractions (fly	
D ' (0.11)	ash content 68 %) - 7 days	281
Figure (8-11)	Flexural load-deflection curves for different fiber volume	202
E_{i} (9.12)	fraction ($V_f=0.6, 1.2, 2.0\%$) at 7 days (fly Ash content = 68 %)	282
	Effect of WPM beating process on the flexural strength Effect of beating process on the toughness parameter Ns for	283
1 iguit (0-15)	different fiber volume fractions	283
Figure (8-14)	Toughness parameter N_r for beaten and unbeaten SWPMCBC	205
0	with 0.6% fiber volume fraction.	284

Figure (8-15)	Toughness parameter N_r for beaten and unbeaten SWPMCBC with 1.2% fiber volume fraction.	284
Figure (8-16)	Toughness parameter N_r for beaten and unbeaten SWPMCBC	
Figure $(8-17)$	with 2 % fiber volume fraction. Effect of fiber beating on the flexural behavior of the WPMCBC	285 286
	Effect of the type of fly ash used in treatment on the flexural	200
	strength	287
Figure (8-19)	Effect of the type of fly ash used in treatment on the flexural	
	toughness parameter N _S	287
Figure (8-20)	Effect of the type of fly ash used in treatment on the flexural	• • • •
E. (0.01)	toughness parameters N_R (7days - $V_f = 1.2$ %)	288
Figure (8-21):	Effect of the type of fly ash used in treatment on the flexural taughness parameters $N_{\rm c}$ (7 days $N_{\rm c} = 2.9\%$)	200
E_{i} (9.22)	toughness parameters N_R (7days - $V_f = 2$ %)	288
Figure (8-22)	Effect of fiber treatment on the flexural strength at 7 & 28 days and optimization of the fiber treatment ($V_f=0.6\%$)	289
Figure (8-23)	1	209
1 igure (0-25)	and optimization of the fiber treatment ($V_f=1.2\%$)	289
Figure (8-24)	Effect of fiber treatment on the flexural strength at 7 & 28 days	20)
0	and optimization of the fiber treatment $(V_f=2\%)$	290
Figure (8-25)	Effect of fiber treatment on the overall post-cracking flexural	
	toughness parameter N _S at 7 &28 days ($V_f=0.6\%$)	290
Figure (8-26)	Effect of fiber treatment on the overall post-cracking flexural	
	toughness parameter N _s at 7 & 28 days (V_f =1.2%)	291
Figure (8-27)	Effect of fiber treatment on the overall post-cracking flexural	• • • •
F ² (0, 2 0)	toughness parameter N _s at 7 & 28 days (Vf=2%)	291
Figure (8-28)	Effect of fiber treatment on the post-cracking flexural toughness parameters N at 7 days $(V = 0.6\%)$	292
Eigure (8, 20)	parameters N_R at 7 days ($V_f=0.6\%$) Effect of fiber treatment on the post-cracking flexural toughness	292
Figure (8-29)	parameters N_R at 7 days ($V_f=1.2\%$)	292
Figure (8-30)	Effect of fiber treatment on the post-cracking flexural toughness	
1 iguie (0 50)	parameters N _R at 7 days ($V_f = 2\%$)	293
Figure (8-31)	Effect of fiber treatment on the post-cracking flexural toughness	
	parameters N_R at 28 days ($V_f=0.6\%$)	293
Figure (8-32)	Effect of fiber treatment on the post-cracking flexural toughness	
	parameters N_R at 28 days (V _f =1.2%)	294
Figure (8-33)	Effect of fiber treatment on the post-cracking flexural toughness	
D ² (0.04)	294parameters N_R at 28 days ($V_f = 2\%$)	294
Figure (8-34)	SEM micrographs for fracture surfaces for mortar specimens	205
E_{i} (9.25)	reinforced with treated WPM	295
Figure (8-33)	Effect of fiber Length on the flexural strength of WBMCBC at 7days	296
Figure (8-36)	Effect of fiber length on the overall post-cracking flexural	290
i iguit (0-50)	toughness parameter at 7 days	296
Figure (8-37)	Effect of fiber length on the post-cracking flexural toughness	_/0
0 ()	parameters N_R at 7days (V _f =1.2%)	297

Figure (8-38)	Effect of fiber length on the post-cracking flexural toughness	
	parameters N_R at 7 days ($V_f = 2\%$)	297
Figure (8-39)	Effect of fiber length on the flexural load-deflection behavior of	
	WPMCBC at 7 days (V _f =1.2%)	298
Figure (8-40)	Effect of fiber length on the flexural load-deflection behavior of	
	WPMCBC at 7 days ($V_f = 2\%$)	298
Figure (8-41)	Flexural strength and post-cracking flexural toughness parameter	
	N _S for WPMCBC reinforced with SWPM and HWPM	
	$(V_{f}=1.2\%)$	299
Figure (8-42)	Post-cracking flexural toughness parameter N _R for WPMCBC	
	reinforced with SWPM and HWPM (V _f =1.2%)	299
Figure (8-43)	Flexural load-deflection behavior of WPMCBC reinforced with	
	mix of SWPM and HWPM ($V_f=1.2\%$)	300
Figure (8-44)	Effect of age on the flexural strength of WPMCBC	301
Figure (8-45)	Effect of age on the overall post-cracking toughness parameter	
	N _s for WPMCBC	301
Figure (8-46)	Effect of the age on the post-cracking flexural toughness	
,	parameters (V _f =1.2%)	302
Figure (8-47)	Effect of the age on the post-cracking flexural toughness	
	parameters (V _f =2%)	302
Figure (8-48)	Load-deflection curves for WPMCBC samples tested at different	
	ages ($V_f=2\%$)	303
Figure (8-49)	SEM micrographs for the fracture surface of the WPMCBC	
	tested in flexure at 7 days showing the fiber surface and the fiber	
	pull out	304
Figure (8-50)	Different mode of wood pulp microfibers failure for samples	
	tested at 12 weeks age	305
Figure (8-51)	SEM micrographs for the fracture surface of the WPMCBC	
	tested in flexure at 12 weeks showing the mineralization inside	
	the fiber lumen and on the fiber surface	306
Figure (8-52)		
	tested in flexure at 28 days showing the different fiber failure	
	mode and the fiber surface	307
Figure (8-53)	Development of cement composite reinforced with WPM impact	
	energy absorption [Campbell and Coutts, 1980]	308
Figure (8-54)	Effect of wet and dry testing condition on the flexural strength of	
	WPMCBC- $V_f=1.2\%$	309
Figure (8-55)	Effect of wet and dry testing condition on the flexural strength of	
	WPMCBC- V _f =2%	309
Figure (8-56)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N _S of WPMCBC- V _f =1.2%	310
Figure (8-57)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N _S of WPMCBC- V _f =2%	310
Figure (8-58)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N _R of WPMCBC- 7 days- V _f =1.2%	311

Figure (8-59)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N_R of WPMCBC - 7 days - $V_f=2\%$	311
Figure (8-60)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N _R of WPMCBC- 28 days- V _f =1.2%	312
Figure (8-61)	Effect of wet and dry testing condition on the flexural toughness	
	parameter N_R of WPMCBC - 28 days - $V_f=2\%$	312
Figure (8-62)	Flexural load-deflection curves for $V_f = 1.2\%$ at 28 Days for	
0	oven dry, wet & air dry testing conditions	313
Figure (8-63)	Flexural load-deflection curves for $V_f = 2$ % at 28 Days for oven	
C (dry, wet & air dry samples	314
Figure (8-64)		
0	tested oven dried in flexure at 7 days showing fiber failure mode	315
Figure (8-65)		010
1 igui e (0 00)	tested oven dried in flexure at 7 days showing fiber failure mode	
	and the separation between S1 and S2 layers	316
	and the separation between 51 and 52 hayers	510
Figure (9-1)	Effect of WPM volume fraction on the unit weight of the WPM	
1 igure () 1)	cement-based mortar	328
Figure (9-2)	Unit weight of unreinforced mortar and WPM mortar with	520
1 Igure ()=2)	treated (T) and untreated (UB-UT) WPM (Vf=0.25%)	329
Figure (9-3)	Unit weight of unreinforced mortar and WPM mortar with	52)
$\operatorname{Figure}\left(\mathcal{I}^{-3}\right)$	treated (T) and untreated (UB-UT) WPM (Vf=0.5%)	329
Figure (9-4)	Unit weight of unreinforced mortar and WPM mortar with	329
Figure (9-4)	treated (T) and untreated (UB-UT) WPM (Vf=1%)	330
E_{i} (0, 5)		330
Figure (9-5)	Sample of the mortar prism samples used in measuring the free	220
$\mathbf{E}_{\mathbf{a}}$	shrinkage (length change)	330
Figure (9-6)	Effect of WPM volume fraction on the free shrinkage of mortar	331
$\mathbf{E}_{\mathbf{r}}$	bars $(T = treated)$	331
Figure (9-7)	Free shrinkage strain of unreinforced mortar and SWPM mortar	222
E. (0.0)	with treated (T) and untreated (UB-UT) SWPM (Vf=0.25%)	332
Figure (9-8)	Free shrinkage strain of unreinforced mortar and SWPM mortar	222
E : (0, 0)	with treated (T) and untreated (UB-UT) SWPM (Vf=0.5%)	332
Figure (9-9)	Free shrinkage strain of unreinforced mortar and SWPM mortar	
	with treated (T) and untreated (UB-UT) SWPM (Vf=1%)	333
Figure (9-10)	Free shrinkage strain of unreinforced mortar and HWPM mortar	
	with treated (T) and untreated (UT) HWPM (Vf=0.25%)	333
Figure (9-11)	Effect of fiber type (Softwood vs. Hardwood) or fiber length on	
	the free shrinkage.	334
	Shrinkage cracking in unreinforced ring samples	334
Figure (9-13)	Ring samples reinforced with 0.5% treated and untreated	
	softwood and hardwood fibers showing no signs of cracks	335
Figure (9-14)	Shrinkage cracking measurements of unreinforced sample as an	
	average of three reading at different places on the crack	335

SUMMARY

As an alternative to more expensive steel, glass, and synthetic polymer fibers, wood fibers are well-suited for reinforcing cement-based products due to their high strength-tocost ratio, availability, renewability and recyclability, and non-hazardous nature. The goals of this study were: (1) to improve fiber distribution, (2) to assess how different wood pulp microfibers influence the behavior of cement-based composites, and (3) to develop a practical method for characterizing the toughness of cement-based composites measured in flexure. Toward the first objective, a method involving mechanically and chemically tailoring the fiber surface was developed to improve pulp fiber dispersion in cement-based matrices. By overcoming common problems with fiber clumping, the development of this low-cost method for improving dispersion should broaden the use of pulp fibers in cementbased composites. Assessment of the effect of pulp fiber reinforcement made through measurements of compressive strength, toughness in compression, stiffness, flexural strength and toughness, and free and restrained shrinkage showed that the use of wood fibers in cement-based composites significantly improved the toughness in both flexure and compression without having a great detrimental effect on the strength or shrinkage. Also, reinforcement with longer softwood fibers, as compared to shorter hardwood fibers, was found to produce larger increases in toughness. Finally, a new simple and practical method that uses a new set of parameters to characterize toughness in flexure has been proposed.