Numerical and Experimental Investigation of Passenger Vehicle Windshield Defrosting and Demisting

by

Amr Ali M. M. Hassan
BEng, MSc

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

February 2002
CONTENTS

CONTENTS i
ABSTRACT vii
ACKNOWLEDGEMENTS viii
NOMENCLATURE ix

1. CHAPTER 1 INTRODUCTION
 1.1 Introduction 1-1
 1.2 Historical development of automotive Heating Ventilation and Air Conditioning (HVAC) 1-2
 1.3 Motivation for the Research 1-4
 1.4 Research Methodology 1-5
 1.5 Structure of the Thesis 1-6

2. CHAPTER 2 LITERATURE REVIEW
 2.1 Introduction 2-1
 2.2. Thermal Comfort 2-1
 2.2.1. Effect of ventilation on the change of air contaminant in the car cabin 2-1
 2.2.2. Computational Fluid Dynamics 2-2
 2.2.3. Comparison between CFD and wind-tunnel 2-7
 2.2.4 Velocity Measurements on the windshield and inside the Car Cabin
 I. Tuft stick grid method 2-9
 II. LDA 2-9
 III. LSV 2-9
 IV. PTV 2-11
 V. PIV 2-13
 VI. Hot Wire Anemometry 2-13
 VII. Thermal Imaging 2-14
 2.3. Windshield de-icing Model 2-16
 2.3.1. Computational Fluid Dynamics 2-16
2.3.2. Comparison between CFD and Cold-room 2-21
2.3.3. Side Window 2-24
2.4. HVAC Ducting System 2-24
 2.4.1. Ducting Design 2-24
 2.4.2. Plenum Design 2-28
2.5. Patents 2-30
 2.5.1. Fluidic Oscillator 2-30
 2.5.2. Using Engine's Exhaust 2-33
 2.5.3. Defroster Accessory 2-34
 2.5.4. Air Channels 2-34
2.6. Conclusions 2-37

3. CHAPTER 3. COMPUTATIONAL FLUID DYNAMICS (CFD)
 3.1 Introduction 3-1
 3.2 Application of CFD in automotive HVAC systems 3-1
 3.3 Computational procedure 3-1
 3.3.1 Pre processor 3-2
 3.3.2 Solver 3-2
 3.3.3 Post processor 3-3
 3.4 Description of Fluent 3-3
 3.5 Gambit 3-4
 3.6 Governing equations of fluid flow and heat transfer 3-5
 3.6.1 Mass conservation in three dimensions 3-5
 3.6.2 Momentum equation in three dimensions 3-5
 3.6.3 Energy equation in three dimensions 3-6
 3.6.4 Navier-Stokes equations for a Newtonian fluid 3-7
 3.6.5 General transport equations 3-8
 3.7 Turbulence models 3-8
 3.7.1 The standard k-ε model 3-9
 3.7.2 RNG-Model 3-10
 3.8 Time-Dependent Simulations 3-11
 3.9 Phase Change Modelling Theory 3-12
 3.10 Geometry Investigated 3-15
4. CHAPTER 4 COMPUTATIONAL RESULTS STEADY STATE

4.1 INTRODUCTION 4-1

4.2 CFD results of the Ford Mondeo model (Defroster mode) 4-1
 4.2.1 Velocity and temperature distribution on the front windshield 4-2
 4.2.2 Predicted path lines of the flow from the defroster nozzles 4-5
 4.2.3 Flow field in the vertical longitudinal XZ plane (Ford Mondeo) 4-9
 4.2.4 Flow field in the horizontal XY plane (Ford Mondeo) 4-11

4.3 CFD results of the Ford Taurus model (defroster mode) 4-14
 4.3.1 Velocity and temperature distribution on the front windshield 4-14
 4.3.2 Predicted path lines of the flow from the defroster nozzles 4-17
 4.3.3 Flow field on the vertical longitudinal XZ plane (defroster mode) 4-20
 4.3.4 Flow field in the horizontal XY plane (Defroster mode) 4-24

4.4 Defrosting enhancement 4-27
 4.4.1 A pillar jet defroster 4-27
 4.4.2 Jet issuing from the dashboard 4-32
 4.4.3 Forward the defroster nozzles 4-36

4.5 Conclusions 4-39
5 CHAPTER 5 COMPUTATIONAL RESULTS UN-STEADY

5.1 Introduction 5-1
5.2 Geometry and Mesh 5-1
5.3 Initial and Boundary Conditions 5-1
5.4 Properties of air, ice water and windshield glass 5-2
5.5 Defrosting Model 5-3
5.5.1 Defrosting Patterns without Enhancement 5-3
5.5.2 Defrosting Patterns after In-cabin Displacement of the Defroster Nozzles 5-7
5.5.3 Defrosting Patterns with Air Jets Issuing from the A-Pillar 5-10
5.6 Conclusions 5-13

6 CHAPTER 6 EXPERIMENTAL SET-UP

6.1 Introduction 6-1
6.2 Experimental Arrangement 6-1
6.2.1 The investigated vehicles 6-1
6.2.2 Cold room facility 6-2
6.3 Experimental Techniques 6-5
6.3.1 Thermal imaging techniques 6-6
6.3.2 Hot Bulb probe 6-8
6.4 Experimental procedures 6-9
6.4.1 Thermal Imaging 6-9
6.4.2 Hot Bulb probe 6-9
6.4.3 Windshield frost formation 6-10
6.4.4 Recording of the windshield defrosting process 6-10
6.5 Conclusions 6-10

7 CHAPTER 7 EXPERIMENTAL RESULTS

7.1 Introduction 7-1
7.2 Evaluation of the defrosting mechanisms on existing models 7-1
7.2.1 Ford Granada 7-1
7.2.2 Ford Focus 7-5
7.2.3 Ford Taurus
7.3 Defrosting enhancement
 7.3.1 A pillar jet defroster
 7.3.2 Jet issuing from the dashboard
7.4 Recommended low-pressure drop defrosting mechanisms
 7.4.1 Approach 1
 7.4.2 Approach 2
 7.4.3 Approach 3
7.5 Full-scale defrosting tests.
 7.5.1 Defrosting patterns for no enhancement
 7.5.2 Defrosting pattern for Approach 1
 7.5.3 Defrosting pattern for Approach 2
 7.5.4 Defrosting pattern for Approach 3
7.6 An Assessment of Side-Window Defrosting and Demisting Process
7.7 Conclusions

8 CHAPTER 8 DISCUSSION OF EXPERIMENTAL MEASUREMENTS AND COMPUTATIONAL RESULTS
 8.1 Introduction
 8.2 Normalised results
 8.3 Comparison between the proposed defrosting mechanisms for Enhancement
 8.4 Comparison between the numerical and the cold room defrosting patterns on the vehicle windshield
 8.5 Conclusions

9 CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS
 9.1 Introduction
 9.2 Summary and conclusions
 9.2.1 CFD work
 9.2.2 Experimental work
 9.3 Future work
9.3.1 Improvements to experimental work 9-4
9.3.2 Extensions to experimental work 9-4
9.3.3 Extension to CFD study 9-5

10 APPENDICES

APPENDIX I References R-1

APPENDIX II Standard requirements for Defrosting and Demisting System

I. SAE Recommended Practice SAE J902 A-1
 "Passenger Car Windshield Defrosting Systems"

II. FMVSS Standard No. 103 "Windshield Defrosting and Defogging Systems" A-6

III. International Standard ISO 10263-5 A-8
 "Windscreen defrosting system test method"
An obstructed vision of the driver, particularly at eye level, is uncomfortable and indeed dangerous. The windshield defrosting and demisting system is an important safety aspect of passenger cars. The complexity of the windshield topography and the defroster nozzle geometry yields an inadequate defrosting and demisting action due to insufficient flow mixing as well as a poor momentum interchange in the critical visibility areas.

The present thesis describes an experimental and computational study of the defrosting/demisting problem. The study is carried out for full-scale vehicles and the computational simulation is validated against full-scale experimental data obtained on vehicle housed in a dedicated test chamber. The computational grid is three-dimensional and uses measured boundary conditions imposed on an unstructured mesh generated by the CFD code FLUENT. The computational results presented here are obtained for the defroster mode.

The experimental programme makes use of several devices. Thermal Anemometery technique is used to determine the velocity field in the vicinity of the defroster nozzles and near the interior of the windshield. Thermography is used to map the temperature contours on the windshield outer surface. Thermography, in addition to being non-intrusive, it shifts the problem from that of direct measurement of air temperature at a specific point in space to that of determining the air temperature ranges in the vicinity of the windshield.

This study shows the drawbacks of existing designs and outlines how the defrosting and demisting process could be improved through passive means and using the existing air handling system of the vehicle.
ACKNOWLEDGEMENTS

I would like to thank Dr Abdelwahab Aroussi, my supervisor, for his perpetual participation and valuable assistance during the research. Particularly, in the first stage of the work and at the designing stage of the test rig, as well as the tremendous effort in revising the transcript of this research.

I am also grateful to the Arab Academy for Science and Technology and Maritime Transport for their moral and financially support.

I would also like to thank Professor B. R. Clayton for his co-operation and continuous encouragement. The support of Visteon Climate Control Systems (Plymouth, Michigan, U.S.A.) is kindly acknowledged. I would also like to thank Dr Bashar AbdulNour of Ford Motor Company (USA) for the useful discussions.

I would also like to thank Saud Abdul Ghani for his assistance as well as my friends and colleges at the University of Nottingham, who made the duration of studies enjoyable. Last but not least, I give special thanks to my parents and wife for their support during my study in the UK.
NOMENCLATURE

C_p specific heat at constant pressure

E Energy (W)

G_k The generation of turbulent kinetic energy due to the mean velocity gradient

G_b The generation of turbulent kinetic energy due to buoyancy

h Heat transfer coefficient

K Kinetic energy (kg m2/s2)

K coefficient of thermal conductivity (W/m2K)

L Characteristic length (m)

M_t Turbulence viscosity

$n + 1$ value at the next time level, $t + \Delta t$

n value at the current time level, t

$n - 1$ value at the previous time level, $t - \Delta t$

Nu Nusselt number

Re Reynolds Number

S_{Mx} Body force effect in X-direction

S_{My} Body force effect in Y-direction

S_{Mz} Body force effect in Z-direction

S_E Source of energy per unit volume

t denoting the dimension time (s)
\(T \) Temperature (k)

\(u \) Velocity components in X-direction (m/s)

\(v \) Velocity components in Y-direction (m/s)

\(\gamma_M \) Contribution of the fluctuating dilation in compressible turbulence to the overall dissipation rate

\(w \) Velocity components in Z-direction (m/s)

\(\Delta H^{n+1} \) current solution for latent heat content

\(\Delta H^n \) latent heat content from previous iteration

\(\alpha \) under-relaxation factor

Greek and other

\(\phi \) a scalar quantity

\(\sigma_K \) Turbulent Prandtl number for K

\(\sigma_\varepsilon \) Turbulent Prandtl number for \(\varepsilon \)

\(\delta \) Partial derivative

\(\Delta \) Difference operation

\(\varepsilon \) Turbulence dissipation (kg m\(^2\)/s\(^3\))

\(\varepsilon \) Emissivity of the glass

\(\mu \) Viscosity (kg/ms)

\(\nu \) Kinematic viscosity (m\(^2\)/s)

\(\rho \) Density (kg/m\(^3\))
\(\phi \) Angular displacement

\(\tau \) Viscous stress

\(\Gamma \) Diffusion coefficient